In: Statistics and Probability
There are 180 primary schools in a country area having an average of 30 or more people under the age of 21 per class. A sample of 30 schools drawn using systematic sampling with an interval of k = 6.
Serial number |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
No. of students |
60 |
200 |
45 |
50 |
40 |
79 |
35 |
41 |
30 |
120 |
Serial number |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
No. of students |
300 |
65 |
111 |
120 |
200 |
42 |
51 |
67 |
32 |
40 |
Serial number |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
No. of students |
46 |
55 |
250 |
100 |
63 |
90 |
47 |
82 |
31 |
50 |
Serial number | x | ( x - x¯) | ( x - x¯)² |
1 | 60 | -24.73 | 611.5729 |
2 | 200 | 115.27 | 13287.1729 |
3 | 45 | -39.73 | 1578.4729 |
4 | 50 | -34.73 | 1206.1729 |
5 | 40 | -44.73 | 2000.7729 |
6 | 79 | -5.73 | 32.8329 |
7 | 35 | -49.73 | 2473.0729 |
8 | 41 | -43.73 | 1912.3129 |
9 | 30 | -54.73 | 2995.3729 |
10 | 120 | 35.27 | 1243.9729 |
11 | 300 | 215.27 | 46341.1729 |
12 | 65 | -19.73 | 389.2729 |
13 | 111 | 26.27 | 690.1129 |
14 | 120 | 35.27 | 1243.9729 |
15 | 200 | 115.27 | 13287.1729 |
16 | 42 | -42.73 | 1825.8529 |
17 | 51 | -33.73 | 1137.7129 |
18 | 67 | -17.73 | 314.3529 |
19 | 32 | -52.73 | 2780.4529 |
20 | 40 | -44.73 | 2000.7729 |
21 | 46 | -38.73 | 1500.0129 |
22 | 55 | -29.73 | 883.8729 |
23 | 250 | 165.27 | 27314.1729 |
24 | 100 | 15.27 | 233.1729 |
25 | 63 | -21.73 | 472.1929 |
26 | 90 | 5.27 | 27.7729 |
27 | 47 | -37.73 | 1423.5529 |
28 | 82 | -2.73 | 7.4529 |
29 | 31 | -53.73 | 2886.9129 |
30 | 50 | -34.73 | 1206.1729 |
∑x = 2542 | ∑( x - x¯)² = 133307.867 |
The total number of students = 2542
Mean = ∑x / n
= 2542 / 25
x¯ = 84.73
Variance = ∑( x - x¯)² / ( n-1)
= 133307.867 / 29
Variance = 4596.823
Standard Deviation = √4596.823 = 67.80
Sample size n = 30
Sample Standard deviation S = 67.80
mean μ = 84.73
Standard Error = S / √n
= 67.80 / √30
= 12.37
Standard Error = 12.37
Confidence Interval = Mean + - Margin Error
Confidence Interval = Mean + - ( Critical value* Standard Error)
For Critical value:
ꭤ = 1 – 0.95 = 0.05
P value = 1 – (ꭤ/ 2)
= 1 – (0.05/2)
= 1 – 0.025
= 0.975
From Z table we get
Critical value = 1.96
Now,
Confidence Interval = Mean + - ( Critical value* Standard Error)
= 84.73 + - ( 1.96 * 12.37)
= 84.73 + - 24.24
= 60 and 109
Confidence Interval = 60 and 109