In: Statistics and Probability
There are 180 primary schools in a country area having an average of 30 or more people under the age of 21 per class. A sample of 30 schools drawn using systematic sampling with an interval of k = 6.
| 
 Serial number  | 
 1  | 
 2  | 
 3  | 
 4  | 
 5  | 
 6  | 
 7  | 
 8  | 
 9  | 
 10  | 
| 
 No. of students  | 
 60  | 
 200  | 
 45  | 
 50  | 
 40  | 
 79  | 
 35  | 
 41  | 
 30  | 
 120  | 
| 
 Serial number  | 
 11  | 
 12  | 
 13  | 
 14  | 
 15  | 
 16  | 
 17  | 
 18  | 
 19  | 
 20  | 
| 
 No. of students  | 
 300  | 
 65  | 
 111  | 
 120  | 
 200  | 
 42  | 
 51  | 
 67  | 
 32  | 
 40  | 
| 
 Serial number  | 
 21  | 
 22  | 
 23  | 
 24  | 
 25  | 
 26  | 
 27  | 
 28  | 
 29  | 
 30  | 
| 
 No. of students  | 
 46  | 
 55  | 
 250  | 
 100  | 
 63  | 
 90  | 
 47  | 
 82  | 
 31  | 
 50  | 
| Serial number | x | ( x - x¯) | ( x - x¯)² | 
| 1 | 60 | -24.73 | 611.5729 | 
| 2 | 200 | 115.27 | 13287.1729 | 
| 3 | 45 | -39.73 | 1578.4729 | 
| 4 | 50 | -34.73 | 1206.1729 | 
| 5 | 40 | -44.73 | 2000.7729 | 
| 6 | 79 | -5.73 | 32.8329 | 
| 7 | 35 | -49.73 | 2473.0729 | 
| 8 | 41 | -43.73 | 1912.3129 | 
| 9 | 30 | -54.73 | 2995.3729 | 
| 10 | 120 | 35.27 | 1243.9729 | 
| 11 | 300 | 215.27 | 46341.1729 | 
| 12 | 65 | -19.73 | 389.2729 | 
| 13 | 111 | 26.27 | 690.1129 | 
| 14 | 120 | 35.27 | 1243.9729 | 
| 15 | 200 | 115.27 | 13287.1729 | 
| 16 | 42 | -42.73 | 1825.8529 | 
| 17 | 51 | -33.73 | 1137.7129 | 
| 18 | 67 | -17.73 | 314.3529 | 
| 19 | 32 | -52.73 | 2780.4529 | 
| 20 | 40 | -44.73 | 2000.7729 | 
| 21 | 46 | -38.73 | 1500.0129 | 
| 22 | 55 | -29.73 | 883.8729 | 
| 23 | 250 | 165.27 | 27314.1729 | 
| 24 | 100 | 15.27 | 233.1729 | 
| 25 | 63 | -21.73 | 472.1929 | 
| 26 | 90 | 5.27 | 27.7729 | 
| 27 | 47 | -37.73 | 1423.5529 | 
| 28 | 82 | -2.73 | 7.4529 | 
| 29 | 31 | -53.73 | 2886.9129 | 
| 30 | 50 | -34.73 | 1206.1729 | 
| ∑x = 2542 | ∑( x - x¯)² = 133307.867 | 
The total number of students = 2542
Mean = ∑x / n
= 2542 / 25
x¯ = 84.73
Variance = ∑( x - x¯)² / ( n-1)
= 133307.867 / 29
Variance = 4596.823
Standard Deviation = √4596.823 = 67.80
Sample size n = 30
Sample Standard deviation S = 67.80
mean μ = 84.73
Standard Error = S / √n
= 67.80 / √30
= 12.37
Standard Error = 12.37
Confidence Interval = Mean + - Margin Error
Confidence Interval = Mean + - ( Critical value* Standard Error)
For Critical value:
ꭤ = 1 – 0.95 = 0.05
P value = 1 – (ꭤ/ 2)
= 1 – (0.05/2)
= 1 – 0.025
= 0.975
From Z table we get
Critical value = 1.96
Now,
Confidence Interval = Mean + - ( Critical value* Standard Error)
= 84.73 + - ( 1.96 * 12.37)
= 84.73 + - 24.24
= 60 and 109
Confidence Interval = 60 and 109