In: Statistics and Probability
Inorganic phosphorous is a naturally occurring element in all plants and animals, with concentrations increasing progressively up the food chain (fruit < vegetables < cereals < nuts < corpse). Geochemical surveys take soil samples to determine phosphorous content (in ppm, parts per million). A high phosphorous content may or may not indicate an ancient burial site, food storage site, or even a garbage dump. Independent random samples from two regions gave the following phosphorous measurements (in ppm). Assume the distribution of phosphorous is mound-shaped and symmetric for these two regions
Region I: x1; n1 = 15 | |||||||
855 | 1550 | 1230 | 875 | 1080 | 2330 | 1850 | 1860 |
2340 | 1080 | 910 | 1130 | 1450 | 1260 | 1010 | |
Region II: x2; n2 = 14 | |||||||
540 | 810 | 790 | 1230 | 1770 | 960 | 1650 | 860 |
890 | 640 | 1180 | 1160 | 1050 | 1020 |
(a) Use a calculator with mean and standard deviation keys to verify that x1, s1, x2, and s2. (Round your answers to one decimal place.)
x1 | = ppm |
s1 | = ppm |
x2 | = ppm |
s2 | = ppm |
(b) Let μ1 be the population mean for
x1 and let μ2 be the
population mean for x2. Find a 90% confidence
interval for μ1 − μ2.
(Round your answers to one decimal place.)
lower limit | ppm |
upper limit | ppm |
Region 1 ( X ) | Σ ( Xi- X̅ )2 | Region 2 ( Y ) | Σ ( Yi- Y̅ )2 | |
855 | 283378.7423 | 540 | 249286.2102 | |
1550 | 26460.4553 | 810 | 52571.9322 | |
1230 | 24753.7673 | 790 | 62143.3602 | |
875 | 262485.4103 | 1230 | 36371.9442 | |
1080 | 94453.7573 | 1770 | 533943.3882 | |
2330 | 888620.5073 | 960 | 6286.2222 | |
1850 | 214060.4753 | 1650 | 372971.9562 | |
1860 | 223413.8093 | 860 | 32143.3622 | |
2340 | 907573.8413 | 890 | 22286.2202 | |
1080 | 94453.7573 | 640 | 159429.0702 | |
910 | 227847.0793 | 1180 | 19800.5142 | |
1130 | 66220.4273 | 1160 | 14571.9422 | |
1450.0 | 3927.1153 | 1050 | 114.7962 | |
1260 | 16213.7693 | 1020 | 371.9382 | |
1010 | 142380.4193 | 14550 | 1562292.857 | |
Total | 20810 | 3476243.334 |
Mean X̅ = Σ Xi / n
X̅ = 20810 / 15 = 1387.3
Sample Standard deviation SX = √ ( (Xi - X̅
)2 / n - 1 )
SX = √ ( 3476243.3335 / 15 -1 ) =
498.3
Mean Y̅ = ΣYi / n
Y̅ = 14550 / 14 = 1039.3
Sample Standard deviation SY = √ ( (Yi - Y̅
)2 / n - 1 )
SY = √ ( 1562292.8568 / 14 -1) =
346.7
Part b)
Confidence interval :-
DF = 25
t(α/2, DF) = t(0.1 /2, 25 ) = 1.708
Lower Limit =
Lower Limit = 77.2
Upper Limit =
Upper Limit = 618.9
90% Confidence interval is ( 77.2 , 618.9 )