In: Finance
Given the returns and probabilities for the three possible states listed below, calculate the covariance between the returns of Stock A and Stock B. For convenience, assume that the expected returns of Stock A and Stock B are 11.75 percent and 18 percent, respectively. Probability Return on Stock A Return on Stock B Good 0.35 0.30 0.50 OK 0.50 0.10 0.10 Poor 0.15 −0.25 −0.30
Stock A | |||||
Scenario | Probability | Return | =rate of return * probability | Actual return -expected return(A) | (A)^2* probability |
Good | 0.35 | 0.3 | 0.105 | -0.0175 | 0.000107188 |
OK | 0.5 | 0.5 | 0.25 | 0.1825 | 0.016653125 |
Poor | 0.15 | -0.25 | -0.0375 | -0.5675 | 0.048308438 |
Expected return = | sum of weighted return = | 0.3175 | Sum= | 0.06506875 | |
Standard deviation of Stock A | =(sum)^(1/2) | 0.25508577 | |||
Stock B | |||||
Scenario | Probability | Return | =rate of return * probability | Actual return -expected return(B) | (B)^2* probability |
Good | 0.35 | 0.5 | 0.175 | 0.365 | 0.04662875 |
OK | 0.5 | 0.01 | 0.005 | -0.125 | 0.0078125 |
Poor | 0.15 | -0.3 | -0.045 | -0.435 | 0.02838375 |
Expected return = | sum of weighted return = | 0.135 | Sum= | 0.082825 | |
Standard deviation of Stock B | =(sum)^(1/2) | 0.287793329 | |||
Covariance Stock A Stock B: | |||||
Scenario | Probability | Actual return -expected return(A) | Actual return -expected return(B) | (A)*(B)*probability | |
Good | 0.35 | -0.0175 | 0.365 | -0.002235625 | |
OK | 0.5 | 0.1825 | -0.125 | -0.01140625 | |
Poor | 0.15 | -0.5675 | -0.435 | 0.037029375 | |
Covariance=sum= | 0.0233875 | ||||
Correlation A&B= | Covariance/(std devA*std devB)= | 0.318578781 |