Question

In: Statistics and Probability

3. An urn contains 12 red balls and 8 green balls. Six balls are drawn randomly...

3. An urn contains 12 red balls and 8 green balls. Six balls are drawn randomly with replacement

a. Find the probability of drawing exactly two red balls?

b. Find the probability of drawing at least one green ball?

c. Find the probability of drawing exactly two green balls when the drawings are done without replacement?

Solutions

Expert Solution


Related Solutions

An urn contains 5 green balls and 8 red balls. One of the balls is drawn...
An urn contains 5 green balls and 8 red balls. One of the balls is drawn at random. The drawn ball is returned to the urn with 3 additional balls of the same color. A second ball is drawn from the newly constituted urn. a. What is the probability the second ball is green? b. Given that the second ball was red, what is the probability that the first ball was green?
Urn 1 contains 8 green balls and 10 red balls. Urn 2 contains 7 green balls...
Urn 1 contains 8 green balls and 10 red balls. Urn 2 contains 7 green balls and 5 red balls. A die is rolled, if a 1 or 2 is rolled, a ball is chosen from urn 1, if a 3, 4, 5, or 6 is rolled, a balls is chosen from urn 2. What is the probability of selecting a green ball? Please show all work.
An urn contains 4 red balls and 3 green balls. Two balls are sampled randomly. Let...
An urn contains 4 red balls and 3 green balls. Two balls are sampled randomly. Let W denote the number of green balls in the sample when the draws are done with replacement. Give the possible values and the PMF of W.
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and...
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and 6 red balls. One ball is drawn from Urn A and transferred to Urn B. Then one ball is drawn from Urn B and transferred to Urn A. Let X = the number of green balls in Urn A after this process. List the possible values for X and then find the entire probability distribution for X.
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and...
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and 6 red balls. One ball is drawn from Urn A and transferred to Urn B. Then one ball is drawn from Urn B and transferred to Urn A. Let X = the number of green balls in Urn A after this process. List the possible values for X and then find the entire probability distribution for X.
An urn contains 10 red balls and 5 green balls. Balls are randomly selected, one at...
An urn contains 10 red balls and 5 green balls. Balls are randomly selected, one at a time, with replacement, until a red one is obtained. What is the probability that exactly k draws are needed? What is the probability that at least k draws are needed? Define a random variable associated with this experiment. Determine its probability mass function and cumulative distribution function, sketch their graphs. Find the expectation, variance and standard deviation of X.
An urn contains 8 white balls and 5 green balls. A ball is drawn at random,...
An urn contains 8 white balls and 5 green balls. A ball is drawn at random, its color is noted, and replaced together with 2 more of the same color. Then the selection is repeated one more time. What is the probability that the ball in the second draw is green? ANSWER: (0.744) Dont know how to get the answer. Would appreciate with the fewest amount of steps in order to get the answer.
As shown in Figure 02, an urn contains 12 red balls and 4 green balls. The...
As shown in Figure 02, an urn contains 12 red balls and 4 green balls. The red balls are numbered from 1 to 12, and the green balls are numbered from 1 to 4. One ball is randomly drawn from the urn. Which of the following answers is correct? (Let: R = red; G = green; and E = even.) P(G ∪ R) = 0.000. P(R|E) = 0.375. P(G ∪ E) = 0.625. P(G|R) = 0.500. Please provide a walkthrough...
An urn contains 6 red balls and 4 green balls. Three balls are chosen randomly from...
An urn contains 6 red balls and 4 green balls. Three balls are chosen randomly from the urn, without replacement. (a) What is the probability that all three balls are red? (Round your answer to four decimal places.) (b) Suppose that you win $20 for each red ball drawn and you lose $10 for each green ball drawn. Compute the expected value of your winnings.
Urn 1 contains 10 red balls, 5 green balls and 12 orange. Inside Urn 2 there...
Urn 1 contains 10 red balls, 5 green balls and 12 orange. Inside Urn 2 there are 7 red, 13 green, and 20 orange balls. Flip a coin to choose the urn, so there is a 55% chance to heads, you pick urn 1. If you pick tails, you pick urn 2. Then pick a ball from one of the urns after you flip. If you choose an orange ball, pick again but do this only once. a) Draw a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT