Question

In: Electrical Engineering

Rana Abdelal Ex. 350. Consider a unity feedback system where the forward TF is: G(s) =...

Rana Abdelal Ex. 350. Consider a unity feedback system where the forward TF is: G(s) = K (s+18)/(s(s+17)). Find the breakaway and entry points on the real axis (Enter the one closest to the origin first). One point on the root locus is -18+jB. Find K there and and also find B. It is possible to work this one without MATLAB, but it requires some intense algebra. Answers: s1,s2,K, and B. ans:4

Can you show me how to do the MATLAB script for it, Thanks

Solutions

Expert Solution

Please give me thumbs up,if you like the answer .
Please let me know if you don't understand any step before giving Down rating directly :). Happy to help


Related Solutions

A Unity feedback system has an open loop transfer function of G(s) = K / s...
A Unity feedback system has an open loop transfer function of G(s) = K / s (s+1) (s+5) Draw the root locus plot and determine the value of K to give a damping ratio of 0.3 A network having a transfer function of 10(1 +10s) /(1 +100s) is now introduced in tandem. Find the new value of K, which gives the same damping ratio for the closed -loop response. Compare the velocity error constant and settling time of the original...
For a system with G(s) in forward path and H(s) in feedback path, Derive in details...
For a system with G(s) in forward path and H(s) in feedback path, Derive in details the equivalent transfer function and its zeros/poles?
Consider the unity feedback negative system with an open-loop function G(s)= K (s^2+10s+24)/(s^2+3s+2). a. Plot the...
Consider the unity feedback negative system with an open-loop function G(s)= K (s^2+10s+24)/(s^2+3s+2). a. Plot the locations of open-loop poles with X and zeros with O on an s-plane. b. Find the number of segments in the root locus diagram based on the number of poles and zeros. c. The breakaway point (the point at which the two real poles meet and diverge to become complex conjugates) occurs when K = 0.02276. Show that the closed-loop system has repeated poles...
for the unity feedback system, the open loop transfer functions is G(s)=K(s+2)(s+3) / (((s^2)+2*s+2)(s+4)(s+5)(s+6)) a. sketch...
for the unity feedback system, the open loop transfer functions is G(s)=K(s+2)(s+3) / (((s^2)+2*s+2)(s+4)(s+5)(s+6)) a. sketch the root locus (detail step wise) b. find the jw-axis crossing and the gain. K, at the crossing
Consider the function below. f(x) = ex 3 + ex Find the interval(s) where the function...
Consider the function below. f(x) = ex 3 + ex Find the interval(s) where the function is decreasing. (Enter your answer using interval notation. If an answer does not exist, enter DNE.) Find the local maximum and minimum values. (If an answer does not exist, enter DNE.) Find the inflection point. (If an answer does not exist, enter DNE.) Consider the function below. f(x) = x2 x2 − 16 Find the interval(s) where the function is increasing. (Enter your answer...
The plant H(s)=40/(S^2+4) is now put in a unity-feedback connection with a proportionalderivative compensator Cpd(s) =...
The plant H(s)=40/(S^2+4) is now put in a unity-feedback connection with a proportionalderivative compensator Cpd(s) = K(1 + sT), where K and T are real constants to be determined. The closed-loop is stable with a constant step-response error of +20% in steady state. Ignore implementation issues arising from the improperness of the compensator. (a)Determine K. (b)What range of values can T take? (c) What is the gain margin? (d) If the gain cross-over frequency is 10 rad/s, determine the phase...
Consider the following reaction where Kc = 10.5 at 350 K: 2 CH2Cl2 (g) CH4 (g)...
Consider the following reaction where Kc = 10.5 at 350 K: 2 CH2Cl2 (g) CH4 (g) + CCl4 (g) A reaction mixture was found to contain 1.22×10-2 moles of CH2Cl2 (g), 5.20×10-2 moles of CH4 (g), and 4.18×10-2 moles of CCl4 (g), in a 1.00 liter container. Indicate True (T) or False (F) for each of the following: 1. In order to reach equilibrium CH2Cl2(g) must be consumed . 2. In order to reach equilibrium Kc must increase . 3....
Consider the context-free grammar G = ( {S}, {a, b}, S, P) where P = {...
Consider the context-free grammar G = ( {S}, {a, b}, S, P) where P = { S -> aaSb | aab }. Construct a NPDA M that such that L(M) = L(G). I would like the transition graph for this NPDA please.
A function of the feedback control system is desired: = (2 (s + 1)) / (s...
A function of the feedback control system is desired: = (2 (s + 1)) / (s ^ 2 + 3s + 2). If the function transfer process is second order with gain = 4, time constant = 1, damping factor = 1.5, arrange the form of the PID controller function transfer using the direct synthesis method.
Consider a system with the following transfer function, G(s) = 10/ [s(s + 1)]. Design a...
Consider a system with the following transfer function, G(s) = 10/ [s(s + 1)]. Design a compensator according to the following design objectives: • Kv = 20 sec−1 ; • PM = 50 oF; • GM ≥ 10 dB. Submit your answer regarding the detailed compensator design procedures, and the corresponding MATLAB code and figures to verify your design. In addition, compare the step response of both uncompensated and compensated systems in MATLAB
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT