In: Advanced Math
Write the complex number (1−i)^(1+i )in standard form a+ib where i=√−1is the imaginary unit.
write exponential form
1−i=√2(√22+i−√22)=√2e−iπ4
Substitute 1−i by the above in the given expression (1−i)1+i
(1−i)1+i=(√2e−iπ4)1+i
Use exponents rule to take √2 from inside the brackets
(1−i)1+i=(√2)1+i(e−iπ4)(1+i)
Use exponents rule to rewrite as
(1−i)1+i=√2eπ4√2ie−iπ4
√2 may be written as eln√2 ; hence the given expression may be written as
(1−i)1+i=√2eπ4(eln√2)ie−iπ4
Simplify
(1−i)1+i=√2eπ4e(ln√2−π4)i
Write in standard form
(1−i)1+i=√2eπ4cos(ln√2−π4)+i√2eπ4sin(ln√2−π4)
(1-i)^(1+i)