In: Chemistry
Calculate the pH of a 0.0152 M aqueous solution
of nitrous acid (HNO2,
Ka = 4.6×10-4) and the
equilibrium concentrations of the weak acid and its conjugate
base.
pH | = | |
[HNO2]equilibrium | = | M |
[NO2- ]equilibrium | = | M |
HNO2 dissociates as:
HNO2 -----> H+ + NO2-
1.52*10^-2 0 0 (INITIAL)
1.52*10^-2-x x x (AT EQUILIBRIUM)
Ka = [H+][NO2-]/[HNO2]
Ka = x*x/(c-x)
4.6*10^-4 = x*x / (1.52*10^-2 - x)
6.99*10^-6 - 4.6*10^-4 * x = x^2
x^2 + 4.6*10^-4 * x - 6.99*10^-6 = 0
This is quadratic equation (ax^2+bx+c=0)
a = 1.0
b = 4.6*10^-4
c = -6.99*10^-6
Roots can be found by
x = {-b + sqrt(b^2-4*a*c)}/2a
x = {-b - sqrt(b^2-4*a*c)}/2a
b^2-4*a*c = 2.82*10^-5
roots are :
x = 2.42*10^-3 M and x = -2.88*10^-3 M
since x can't be negative, the possible value of x is
x = 2.42*10^-3 M
SO,
[H+] = 2.42*10^-3 M
use:
pH = -log [H+]
= -log ( 2.42*10^-3 )
= 2.62
So,
pH is 2.62
[HNO2] = 1.52*10^-2-x = 1.52*10^-2 - 2.42*10^-3 = 1.28*10^-2 M
[NO2-] = x = 2.42*10^-3 M