In: Finance
You are following Parks’s Perfect Pianos (3P) stock. You’re asked to value the firm’s stock. You’re told the firm will pay a dividend of $1.80 next quarter. You estimate the firm’s dividends will grow at 5% per quarter for 4 years; then at 3% quarterly for 5 years; then at 1% quarterly thereafter. The discount rate is 11% per year, compounded annually. Find the stock price.
Discount rate per quarter = 11%/4 = 2.75%
Quarter | Dividend | PVF @ 2.75% | PV |
1 | 1.8000 | 0.97323601 | 1.7518 |
2 | 1.8900 | 0.947188331 | 1.7902 |
3 | 1.9845 | 0.921837791 | 1.8294 |
4 | 2.0837 | 0.897165734 | 1.8694 |
5 | 2.1879 | 0.873153999 | 1.9104 |
6 | 2.2973 | 0.849784914 | 1.9522 |
7 | 2.4122 | 0.827041278 | 1.9950 |
8 | 2.5328 | 0.804906354 | 2.0387 |
9 | 2.6594 | 0.783363848 | 2.0833 |
10 | 2.7924 | 0.762397906 | 2.1289 |
11 | 2.9320 | 0.741993095 | 2.1755 |
12 | 3.0786 | 0.722134399 | 2.2232 |
13 | 3.2325 | 0.702807201 | 2.2719 |
14 | 3.3942 | 0.683997276 | 2.3216 |
15 | 3.5639 | 0.66569078 | 2.3724 |
16 | 3.7421 | 0.647874238 | 2.4244 |
17 | 3.9292 | 0.630534538 | 2.4775 |
18 | 4.0470 | 0.613658918 | 2.4835 |
19 | 4.1685 | 0.597234957 | 2.4896 |
20 | 4.2935 | 0.581250566 | 2.4956 |
21 | 4.4223 | 0.565693982 | 2.5017 |
22 | 4.5550 | 0.550553754 | 2.5078 |
23 | 4.6916 | 0.535818738 | 2.5139 |
24 | 4.8324 | 0.521478091 | 2.5200 |
25 | 4.9774 | 0.507521256 | 2.5261 |
26 | 5.1267 | 0.493937962 | 2.5323 |
27 | 5.2805 | 0.480718211 | 2.5384 |
28 | 5.4389 | 0.467852274 | 2.5446 |
29 | 5.6021 | 0.45533068 | 2.5508 |
30 | 5.7701 | 0.443144214 | 2.5570 |
31 | 5.9432 | 0.431283907 | 2.5632 |
32 | 6.1215 | 0.419741029 | 2.5695 |
33 | 6.3052 | 0.408507084 | 2.5757 |
34 | 6.4943 | 0.397573804 | 2.5820 |
35 | 6.6892 | 0.386933143 | 2.5883 |
36 | 6.8898 | 0.376577268 | 2.5946 |
37 | 7.0965 | 0.366498558 | 2.6009 |
86.4509 |
From quarter 38th , dividend will grow @ 1% quarterly
PV at 37th quarter = D37(1+g) / Ke - g = 7.0965 (1+0.01) / 0.0275 - 0.01 = 409.5694
PV or stock price today = (409.5694 * PVF(2.75%,37 periods) + 86.4509 = (409.5694 *0.366498558) + 86.4509 = $236.56