In: Statistics and Probability
As preparation for the final research paper, you formulated a theory about the correlation between measurable independent variables (causes) and one measurable dependent variable (the effect). Be sure to have at least two independent variables for proposed research paper. This rough draft should include the following four items which serve as the foundation for the final research paper after instructor feedback is given.
Submit this Word File in this Canvas section for your Term Project Rough Draft, with Data.
The dependent variable for this study Major League Baseball’s (MLB) Player Salary is determined by independent variables such as player’s batting average (AVG), on-base plus slugging (OPS), and runs batted in (RBI). The most important independent variable in this relationship is OPS because if the player has a high rate of reaching base it contributes to the player’s AVG and RBI.
I plan to utilize the model below:
Player’s annual salary: b0+b1AVG+b2OPS+b3RBI
PLAYER |
OPS | RBI | AVG | SAL USD (MILLION) |
TROUT, MIKE | 1.083 | 104 | 0.291 | 36,000,000 |
ARENADO, NOLAN | 0.962 | 118 | 0.315 | 35,000,000 |
MACHADO,MANNY | 0.796 | 85 | 0.256 | 30,000,000 |
CABRERA, MIGUEL | 0.745 | 108 | 0.283 | 30,000,000 |
CESEDES, YOENIS | 0.821 | 29 | 0.262 | 29,000,000 |
PUJOLS, ALBERT | 0.735 | 93 | 0.244 | 29,000,000 |
BETTS, MOOKIE | 0.915 | 80 | 0.295 | 27,000,000 |
GIANCARLO, STANTON | 0.895 | 13 | 0.288 | 26,000,000 |
ALTUVE, JOSE | 0.903 | 74 | 0.298 | 26,000,000 |
HARPER, BRYCE | 0.882 | 114 | 0.26 | 26,000,000 |
RENDON, ANTHONY | 1.01 | 126 | 0.319 | 25,500,000 |
VOTTO, JOEY | 0.768 | 47 | 0.261 | 25,000,000 |
ROBINSON, CANO | 0.735 | 39 | 0.256 | 24,000,000 |
MARTINEZ, J.D. | 0.94 | 105 | 0.304 | 23,750,000 |
FREEMAN, FREDDIE | 0.938 | 121 | 0.295 | 22,000,000 |
GOLDSCHMIDT, PAUL | 0.822 | 97 | 0.26 | 22,000,000 |
POSEY, BUSTER | 0.688 | 38 | 0.257 | 21,400,000 |
UPTON, JUSTIN | 0.725 | 40 | 0.215 | 21,000,000 |
CHOO, SHIN-SOO | 0.826 | 61 | 0.265 | 21,000,000 |
BLACKMON, CHARLIE | 0.94 | 86 | 0.314 | 21,000,000 |
HEYWARD, JASON | 0.773 | 62 | 0.251 | 21,000,000 |
SPRINGER, GEORGE | 0.974 | 96 | 0.292 | 21,000,000 |
DONALDSON, JOSH | 0.379 | 94 | 0.259 | 21,000,000 |
BOGAERTS, XANDER | 0.939 | 117 | 0.309 | 20,000,000 |
MYERS, WIL | 0.739 | 53 | 0.239 | 20,000,000 |
HOSMER, ERIC | 0.735 | 99 | 0.265 | 20,000,000 |
MOLINA, YADIER | 0.711 | 57 | 0.27 | 20,000,000 |
TURNER, JUSTIN | 0.372 | 51 | 0.29 | 19,000,000 |
SEAGER, KYLE | 0.784 | 63 | 0.237 | 19,000,000 |
BRYANT, KRIS | 0.903 | 77 | 0.282 | 18,600,000 |
yes the value of intercept and slopes are below
##########################################################
data=read.csv("D:basket.csv",header=T)
> data
PLAYER OPS RBI AVG SALARY
1 TROUT, MIKE 1.083 104 0.291 36000000
2 ARENADO, NOLAN 0.962 118 0.315 35000000
3 MACHADO,MANNY 0.796 85 0.256 30000000
4 CABRERA, MIGUEL 0.745 108 0.283 30000000
5 CESEDES, YOENIS 0.821 29 0.262 29000000
6 PUJOLS, ALBERT 0.735 93 0.244 29000000
7 BETTS, MOOKIE 0.915 80 0.295 27000000
8 GIANCARLO, STANTON 0.895 13 0.288 26000000
9 ALTUVE, JOSE 0.903 74 0.298 26000000
10 HARPER, BRYCE 0.882 114 0.260 26000000
11 RENDON, ANTHONY 1.010 126 0.319 25500000
12 VOTTO, JOEY 0.768 47 0.261 25000000
13 ROBINSON, CANO 0.735 39 0.256 24000000
14 MARTINEZ, J.D. 0.940 105 0.304 23750000
15 FREEMAN, FREDDIE 0.938 121 0.295 22000000
16 GOLDSCHMIDT, PAUL 0.822 97 0.260 22000000
17 POSEY, BUSTER 0.688 38 0.257 21400000
18 UPTON, JUSTIN 0.725 40 0.215 21000000
19 CHOO, SHIN-SOO 0.826 61 0.265 21000000
20 BLACKMON, CHARLIE 0.940 86 0.314 21000000
21 HEYWARD, JASON 0.773 62 0.251 21000000
22 SPRINGER, GEORGE 0.974 96 0.292 21000000
23 DONALDSON, JOSH 0.379 94 0.259 21000000
24 BOGAERTS, XANDER 0.939 117 0.309 20000000
25 MYERS, WIL 0.739 53 0.239 20000000
26 HOSMER, ERIC 0.735 99 0.265 20000000
27 MOLINA, YADIER 0.711 57 0.270 20000000
28 TURNER, JUSTIN 0.372 51 0.290 19000000
29 SEAGER, KYLE 0.784 63 0.237 19000000
30 BRYANT, KRIS 0.903 77 0.282 18600000
> x1=data$OPS
> x1
[1] 1.083 0.962 0.796 0.745 0.821 0.735 0.915 0.895 0.903 0.882
1.010 0.768
[13] 0.735 0.940 0.938 0.822 0.688 0.725 0.826 0.940 0.773 0.974
0.379 0.939
[25] 0.739 0.735 0.711 0.372 0.784 0.903
> x2=data$RBI
> x2
[1] 104 118 85 108 29 93 80 13 74 114 126 47 39 105 121 97 38 40
61
[20] 86 62 96 94 117 53 99 57 51 63 77
> x3=data$AVG
> x3
[1] 0.291 0.315 0.256 0.283 0.262 0.244 0.295 0.288 0.298 0.260
0.319 0.261
[13] 0.256 0.304 0.295 0.260 0.257 0.215 0.265 0.314 0.251 0.292
0.259 0.309
[25] 0.239 0.265 0.270 0.290 0.237 0.282
> x4=data$SALARY
> x4
[1] 36000000 35000000 30000000 30000000 29000000 29000000 27000000
26000000
[9] 26000000 26000000 25500000 25000000 24000000 23750000 22000000
22000000
[17] 21400000 21000000 21000000 21000000 21000000 21000000 21000000
20000000
[25] 20000000 20000000 20000000 19000000 19000000 18600000
> fit=lm(x4~x1+x2+x3)
> fit
Call:
lm(formula = x4 ~ x1 + x2 + x3)
Coefficients:
(Intercept) x1 x2 x3
13833897 10200269 15440 2395626
>