In: Finance
Arthur and Rebecca have been married for one year, and are planning to buy a house in Canberra for $900,000. They will borrow $600,000 from a bank. The interest rate on the loan is 4.00% per annum, compounding quarterly. The loan is for 30 years, and they have to make quarterly repayments to the bank, the first payment being exactly three months (i.e. one quarter) from today. What is the amount of the quarterly repayment?
Select one:
a. $8,458.77
b. $10,152.36
c. $12,912.39
d. $8,608.26
Computation of the Quartely installment amount
Loan Amount = $ 600000
Interest rate = 4% per annum Compounding Quarterly
No.of Years = 30
No.of Quarterly Repayments = 4*30=120
Interest rate per Quarter = 4% /4 = 1% per Quarter.
S.No | Disc @ 1% | Disc @ 1% |
1 | 1/1.01 | 0.99009901 |
2 | (1/1.01)^2 | 0.980296049 |
3 | (1/1.01)^3 | 0.970590148 |
4 | (1/1.01)^4 | 0.960980344 |
5 | (1/1.01)^5 | 0.951465688 |
6 | (1/1.01)^6 | 0.942045235 |
7 | (1/1.01)^7 | 0.932718055 |
8 | (1/1.01)^8 | 0.923483222 |
9 | (1/1.01)^9 | 0.914339824 |
10 | (1/1.01)^10 | 0.905286955 |
11 | (1/1.01)^11 | 0.896323718 |
12 | (1/1.01)^12 | 0.887449225 |
13 | (1/1.01)^13 | 0.878662599 |
14 | (1/1.01)^14 | 0.86996297 |
15 | (1/1.01)^15 | 0.861349475 |
16 | (1/1.01)^16 | 0.852821262 |
17 | (1/1.01)^17 | 0.844377487 |
18 | (1/1.01)^18 | 0.836017314 |
19 | (1/1.01)^19 | 0.827739915 |
20 | (1/1.01)^20 | 0.81954447 |
21 | (1/1.01)^21 | 0.811430169 |
22 | (1/1.01)^22 | 0.803396207 |
23 | (1/1.01)^23 | 0.795441789 |
24 | (1/1.01)^24 | 0.787566127 |
25 | (1/1.01)^25 | 0.779768443 |
26 | (1/1.01)^26 | 0.772047963 |
27 | (1/1.01)^27 | 0.764403924 |
28 | (1/1.01)^28 | 0.756835568 |
29 | (1/1.01)^29 | 0.749342147 |
30 | (1/1.01)^30 | 0.741922918 |
31 | (1/1.01)^31 | 0.734577146 |
32 | (1/1.01)^32 | 0.727304105 |
33 | (1/1.01)^33 | 0.720103075 |
34 | (1/1.01)^34 | 0.712973341 |
35 | (1/1.01)^35 | 0.705914199 |
36 | (1/1.01)^36 | 0.69892495 |
37 | (1/1.01)^37 | 0.692004901 |
38 | (1/1.01)^38 | 0.685153367 |
39 | (1/1.01)^39 | 0.67836967 |
40 | (1/1.01)^40 | 0.671653139 |
41 | (1/1.01)^41 | 0.665003108 |
42 | (1/1.01)^42 | 0.658418919 |
43 | (1/1.01)^43 | 0.651899919 |
44 | (1/1.01)^44 | 0.645445465 |
45 | (1/1.01)^45 | 0.639054916 |
46 | (1/1.01)^46 | 0.632727639 |
47 | (1/1.01)^47 | 0.626463009 |
48 | (1/1.01)^48 | 0.620260405 |
49 | (1/1.01)^49 | 0.614119213 |
50 | (1/1.01)^50 | 0.608038825 |
51 | (1/1.01)^51 | 0.602018638 |
52 | (1/1.01)^52 | 0.596058058 |
53 | (1/1.01)^53 | 0.590156493 |
54 | (1/1.01)^54 | 0.584313359 |
55 | (1/1.01)^55 | 0.578528078 |
56 | (1/1.01)^56 | 0.572800078 |
57 | (1/1.01)^57 | 0.56712879 |
58 | (1/1.01)^58 | 0.561513653 |
59 | (1/1.01)^59 | 0.555954112 |
60 | (1/1.01)^60 | 0.550449616 |
61 | (1/1.01)^61 | 0.54499962 |
62 | (1/1.01)^62 | 0.539603584 |
63 | (1/1.01)^63 | 0.534260974 |
64 | (1/1.01)^64 | 0.528971262 |
65 | (1/1.01)^65 | 0.523733922 |
66 | (1/1.01)^66 | 0.518548438 |
67 | (1/1.01)^67 | 0.513414295 |
68 | (1/1.01)^68 | 0.508330985 |
69 | (1/1.01)^69 | 0.503298005 |
70 | (1/1.01)^70 | 0.498314857 |
71 | (1/1.01)^71 | 0.493381046 |
72 | (1/1.01)^72 | 0.488496085 |
73 | (1/1.01)^73 | 0.48365949 |
74 | (1/1.01)^74 | 0.478870782 |
75 | (1/1.01)^75 | 0.474129488 |
76 | (1/1.01)^76 | 0.469435136 |
77 | (1/1.01)^77 | 0.464787264 |
78 | (1/1.01)^78 | 0.46018541 |
79 | (1/1.01)^79 | 0.455629118 |
80 | (1/1.01)^80 | 0.451117939 |
81 | (1/1.01)^81 | 0.446651425 |
82 | (1/1.01)^82 | 0.442229133 |
83 | (1/1.01)^83 | 0.437850627 |
84 | (1/1.01)^84 | 0.433515472 |
85 | (1/1.01)^85 | 0.42922324 |
86 | (1/1.01)^86 | 0.424973505 |
87 | (1/1.01)^87 | 0.420765846 |
88 | (1/1.01)^88 | 0.416599848 |
89 | (1/1.01)^89 | 0.412475097 |
90 | (1/1.01)^90 | 0.408391185 |
91 | (1/1.01)^91 | 0.404347708 |
92 | (1/1.01)^92 | 0.400344265 |
93 | (1/1.01)^93 | 0.396380461 |
94 | (1/1.01)^94 | 0.392455902 |
95 | (1/1.01)^95 | 0.3885702 |
96 | (1/1.01)^96 | 0.38472297 |
97 | (1/1.01)^97 | 0.380913832 |
98 | (1/1.01)^98 | 0.377142408 |
99 | (1/1.01)^99 | 0.373408324 |
100 | (1/1.01)^100 | 0.369711212 |
101 | (1/1.01)^101 | 0.366050705 |
102 | (1/1.01)^102 | 0.362426441 |
103 | (1/1.01)^103 | 0.35883806 |
104 | (1/1.01)^104 | 0.355285208 |
105 | (1/1.01)^105 | 0.351767533 |
106 | (1/1.01)^106 | 0.348284686 |
107 | (1/1.01)^107 | 0.344836323 |
108 | (1/1.01)^108 | 0.341422102 |
109 | (1/1.01)^109 | 0.338041685 |
110 | (1/1.01)^110 | 0.334694738 |
111 | (1/1.01)^111 | 0.331380928 |
112 | (1/1.01)^112 | 0.328099929 |
113 | (1/1.01)^113 | 0.324851415 |
114 | (1/1.01)^114 | 0.321635064 |
115 | (1/1.01)^115 | 0.318450559 |
116 | (1/1.01)^116 | 0.315297583 |
117 | (1/1.01)^117 | 0.312175825 |
118 | (1/1.01)^118 | 0.309084975 |
119 | (1/1.01)^119 | 0.306024727 |
120 | (1/1.01)^120 | 0.30299478 |
Total | 69.70052203 |
We know that the Present value of the Future cash outflows is equal to the loan amount
Let the Quarterly Repayment be X
X * PVAF( 1% ,120) = $ 600000
X * 69.70052 = $ 600000
X = $ 600000/69.70052
X = $ 8608.257
Hence the Quarterly payment is $ 8608.26.So Option d is Correct.
If you are having any doubts,Please post a Comment.
Thank you.Please rate it