In: Economics
Complete the following cost and revenue schedule.
Price |
Quantity Demanded |
Total Revenue |
Marginal Revenue |
Total Cost |
Marginal Cost |
Average Total Cost |
200 |
0 |
240 |
||||
180 |
10 |
360 |
||||
160 |
20 |
500 |
||||
140 |
30 |
660 |
||||
120 |
40 |
840 |
||||
100 |
50 |
1040 |
||||
80 |
60 |
1260 |
||||
60 |
70 |
1500 |
||||
40 |
80 |
1760 |
||||
20 |
90 |
2040 |
a. At what rate of output are profits maximized within this range?
b. What are total profits at that output rate?
Answer:
Price |
Quantity Demanded |
Total Revenue |
Marginal Revenue |
Total Cost |
Marginal Cost |
Average Total Cost |
200 |
0 |
0 |
--- |
240 |
--- |
--- |
180 |
10 |
1800 |
1800 |
360 |
120 |
36 |
160 |
20 |
3200 |
1400 |
500 |
140 |
25 |
140 |
30 |
4200 |
1000 |
660 |
160 |
22 |
120 |
40 |
4800 |
600 |
840 |
180 |
21 |
100 |
50 |
5000 |
200 |
1040 |
200 |
20.8 |
80 |
60 |
4800 |
-200 |
1260 |
220 |
21 |
60 |
70 |
4200 |
-600 |
1500 |
240 |
21.43 |
40 |
80 |
3200 |
-1000 |
1760 |
260 |
22 |
20 |
90 |
1800 |
-1400 |
2040 |
280 |
22.67 |
a. Profit maximized when output is 50 units.
Profit maximized when MC = MR.
At 50 units of output, MC = MR = 200
b. Total profit = Total revenue - Total cost
At 50 units of output, TR = 5000 and TC = 1040
Total profit = 5000 - 1040
Total profit = 3960
Calculation:
Price |
Quantity Demanded |
Total Revenue |
Marginal Revenue |
Total Cost |
Marginal Cost |
Average Total Cost |
200 |
0 |
200*0=0 |
--- |
240 |
--- |
--- |
180 |
10 |
180*10=1800 |
1800-0=1800 |
360 |
360-240=120 |
360/10=36 |
160 |
20 |
160*20=3200 |
3200-1800=1400 |
500 |
500-360=140 |
500/20=25 |
140 |
30 |
140*30=4200 |
4200-3200=1000 |
660 |
660-500=160 |
660/30=22 |
120 |
40 |
120*40=4800 |
4800-4200=600 |
840 |
840-660=180 |
840/40=21 |
100 |
50 |
100*50=5000 |
5000-4800=200 |
1040 |
1040-840=200 |
1040/50=20.8 |
80 |
60 |
80*60=4800 |
4800-5000=-200 |
1260 |
1260-1040=220 |
1260/60=21 |
60 |
70 |
60*70=4200 |
4200-4800=-600 |
1500 |
1500-1260=240 |
1500/70=21.43 |
40 |
80 |
40*80=3200 |
3200-4200=-1000 |
1760 |
1760-1500=260 |
1760/80=22 |
20 |
90 |
20*90=1800 |
1800-3200=-1400 |
2040 |
2040-1760=280 |
2040/90=22.67 |
Formulas used in calculation:
1. Total revenue = Price * Quantity
2. Marginal revenue of (n) = Total revenue of (n) – Total revenue of (n-1)
3. Marginal cost of (n) = Total cost of (n) – Total cost of (n-1)
4. Average total cost = Total cost / Quantity