In: Statistics and Probability
The National Association for Gardening says that the average vegetable garden size has a standard deviation of 247 sq ft. A random sample of 210 households shows an average size of 642 sq ft. Find a 90% confidence interval for the average size vegetable garden.
Solution :
Given that,
Point estimate = sample mean = = 642
Population standard deviation =
= 247
Sample size = n =210
At 90% confidence level the z is ,
= 1 - 90% = 1 - 0.90 = 0.1
/ 2 = 0.1 / 2 = 0.05
Z/2 = Z0.05 = 1.645 ( Using z table )
Margin of error = E = Z/2 * (
/n)
= 1.645 * (247 / 210
)
= 28.0384
At 90% confidence interval estimate of the population mean
is,
- E <
<
+ E
642 - 28.0384 <
< 642 + 28.0384
613.9616<
< 670.0384
( 613.9616 ,670.0384 )