In: Statistics and Probability
Consider the following joint distribution.
X | |||
p(x,y) | 2 | 4 | |
Y | 1 | 0.11 | 0.36 |
6 | 0.33 | 0.2 |
Based on this distribution, fill in the blanks below.
X | |||
p(x,y) | 2 | 4 | |
Y | 1 | 0.11 | 0.36 |
6 | 0.33 | 0.2 |
x | y | f(x,y) | x*f(x,y) | y*f(x,y) | x^2f(x,y) | y^2f(x,y) | xy*f(x,y) |
2 | 1 | 0.1100 | 0.2200 | 0.1100 | 0.4400 | 0.1100 | 0.2200 |
4 | 1 | 0.3600 | 1.4400 | 0.3600 | 5.7600 | 0.3600 | 1.4400 |
2 | 6 | 0.3300 | 0.6600 | 1.9800 | 1.3200 | 11.8800 | 3.9600 |
4 | 6 | 0.2000 | 0.8000 | 1.2000 | 3.2000 | 7.2000 | 4.8000 |
Total | 1 | 3.1200 | 3.6500 | 10.7200 | 19.5500 | 10.4200 | |
E(X)=ΣxP(x,y)= | 3.1200 | ||||||
E(X2)=Σx2P(x,y)= | 10.7200 | ||||||
E(Y)=ΣyP(x,y)= | 3.6500 | ||||||
E(Y2)=Σy2P(x,y)= | 19.5500 | ||||||
Var(X)=E(X2)-(E(X))2= | 0.9856 | ||||||
Var(Y)=E(Y2)-(E(Y))2= | 6.2275 | ||||||
E(XY)=ΣxyP(x,y)= | 10.4200 | ||||||
Cov(X,Y)=E(XY)-E(X)*E(Y)= | -0.9680 | ||||||
Correlation ρxy=Cov(X,Y)/sqrt(Var(X)*Var(Y))= | -0.3907 |
from above: E(x) =3.12
SD(Y)=sqrt(Var(y))=sqrt(6.2275) =2.4955
Corr(X,Y) =-0.3907