In: Statistics and Probability
Use SPSS for this Application Exercise:
A comparative psychologist hypothesize that feeling sick is
associated with disliking a flavor. In a study rats are randomly
split into two group. In one group rats received an injection of
lithium chloride immediately after drinking stevia-flavored water.
The rats in the other group received no lithium chloride after
drinking the flavored water. Lithium chloride causes nausea. The
next day, all rats could drink stevia-flavored water. The total
amount of stevia-flavored water drank (in milliliters) by all the
rats for the next day are given below. What can be concluded with
α = 0.10?
| lithium | no lithium | 
| 4 4 1 3 2 6 8 6 1  | 
6 9 6 7 9 7 5 6 7  | 
a) What is the appropriate test statistic?
---Select--- na z-test One-Sample t-test Independent-Samples t-test
Related-Samples t-test
b)
Condition 1:
---Select--- disliking a flavor stevia-flavored water lithium
chloride no lithium chloride the rats
Condition 2:
---Select--- disliking a flavor stevia-flavored water lithium
chloride no lithium chloride the rats
c) Input the appropriate value(s) to make a
decision about H0.
(Hint: Make sure to write down the null and alternative hypotheses
to help solve the problem.)
p-value =  ; Decision:  ---Select---
Reject H0 Fail to reject H0
d) Using the SPSS results,
compute the corresponding effect size(s) and indicate
magnitude(s).
If not appropriate, input and/or select "na" below.
d =  ;   ---Select--- na trivial
effect small effect medium effect large effect
r2 =  ;   ---Select--- na
trivial effect small effect medium effect large effect
e) Make an interpretation based on the
results.
Rats that received lithium chloride drank significantly more stevia-flavored water than those that received no lithium chloride.
Rats that received lithium chloride drank significantly less stevia-flavored water than those that received no lithium chloride.
There is no significant difference in stevia-flavored water drank between rats that received lithium and those that received no lithium chloride.
a) Independent-Samples t-test
b) Condition 1: lithium chloride
Condition 2: no lithium chloride
c)
Ho :   µ1 - µ2 =   0  
           
   
Ha :   µ1-µ2 ╪   0  
           
   
          
           
   
Level of Significance ,    α =   
0.1          
       
          
           
   
Sample #1   ---->   1  
           
   
mean of sample 1,    x̅1=   3.889  
           
   
standard deviation of sample 1,   s1 =   
2.421          
       
size of sample 1,    n1=   9  
           
   
          
           
   
Sample #2   ---->   2  
           
   
mean of sample 2,    x̅2=   6.889  
           
   
standard deviation of sample 2,   s2 =   
1.364          
       
size of sample 2,    n2=   9  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
3.8889   -   6.9   =  
-3.00  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    1.9650  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
0.9263          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (   -3.0000  
-   0   ) /    0.93  
=   -3.2387
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
16          
       
p-value =       
0.005142   (excel function: =T.DIST.2T(t stat,df)
)   52      
   
Conclusion:     p-value <α , Reject null
hypothesis          
       
   
d)
cohen's d =    |( x̅1-x̅2 )/Sp | =   
1.5267
      
r²=   0.3960
e)
Rats that received lithium chloride drank significantly less stevia-flavored water than those that received no lithium chloride.