In: Statistics and Probability
You may need to use the appropriate appendix table or technology to answer this question.
Given are five observations for two variables, x and y. (Round your answers to two decimal places.)
| 
 xi  | 
1 | 2 | 3 | 4 | 5 | 
|---|---|---|---|---|---|
| 
 yi  | 
3 | 7 | 6 | 11 | 14 | 
(a)
Use sŷ* = s
 
  | 
to estimate the standard deviation of
ŷ*
when
x = 4.
(b)
Use
ŷ* ± tα/2sŷ*
to develop a 95% confidence interval for the expected value of y when
x = 4.
to
(c)
Use spred = s
1 +
 
  | 
to estimate the standard deviation of an individual value of y when
x = 4.
(d)
Use
ŷ* ± tα/2spred
to develop a 95% prediction interval for y when
x = 4.

| SSE =Syy-(Sxy)2/Sxx= | 7.2000 | |
| s2 =SSE/(n-2)= | 2.4000 | |
| std error σ = | =se =√s2= | 1.5492 | 
| predicted value at X=4 is:2.6*4+0.4= | 10.800 | |
a)
| std error of CI=s*√(1/n+(x0-x̅)2/Sxx)= | 0.85 | |
b)
| for 95 % CI value of t= | 3.182 | |
| margin of error E=t*std error= | 2.700 | |
| lower confidence bound=xo-E= | 8.10 | |
| Upper confidence bound=xo+E= | 13.50 | |
95% Confidence interval =(8.10 , 13.50)
c)
| std error of PI=s*√(1+1/n+(x0-x̅)2/Sxx)= | 1.77 | |
d)
| for 95 % CI value of t= | 3.182 | |
| margin of error E=t*std error= | 5.621 | |
| lower confidence bound=xo-E= | 5.18 | |
| Upper confidence bound=xo+E= | 16.42 | |
95% prediction interval =(5.18 , 16.42)