In: Statistics and Probability
You may need to use the appropriate appendix table or technology to answer this question.
Given are five observations for two variables, x and y. (Round your answers to two decimal places.)
xi |
1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
yi |
3 | 7 | 6 | 11 | 14 |
(a)
Use sŷ* = s
|
to estimate the standard deviation of
ŷ*
when
x = 4.
(b)
Use
ŷ* ± tα/2sŷ*
to develop a 95% confidence interval for the expected value of y when
x = 4.
to
(c)
Use spred = s
1 +
|
to estimate the standard deviation of an individual value of y when
x = 4.
(d)
Use
ŷ* ± tα/2spred
to develop a 95% prediction interval for y when
x = 4.
SSE =Syy-(Sxy)2/Sxx= | 7.2000 |
s2 =SSE/(n-2)= | 2.4000 | |
std error σ = | =se =√s2= | 1.5492 |
predicted value at X=4 is:2.6*4+0.4= | 10.800 |
a)
std error of CI=s*√(1/n+(x0-x̅)2/Sxx)= | 0.85 |
b)
for 95 % CI value of t= | 3.182 | |
margin of error E=t*std error= | 2.700 | |
lower confidence bound=xo-E= | 8.10 | |
Upper confidence bound=xo+E= | 13.50 |
95% Confidence interval =(8.10 , 13.50)
c)
std error of PI=s*√(1+1/n+(x0-x̅)2/Sxx)= | 1.77 |
d)
for 95 % CI value of t= | 3.182 | |
margin of error E=t*std error= | 5.621 | |
lower confidence bound=xo-E= | 5.18 | |
Upper confidence bound=xo+E= | 16.42 |
95% prediction interval =(5.18 , 16.42)