Question

In: Physics

A bullet flies horizontally, hits a wooden block suspended from a 1.0 m string, and gets...

A bullet flies horizontally, hits a wooden block suspended from a 1.0 m string, and gets stuck in the block. The angle of deviation of the string equals 11 degrees. The mass of the bullet is 1000 times smaller than the mass of the block. What is the initial speed of the bullet? Point out the laws of physics in the solution and show all steps.

Solutions

Expert Solution

first we need to calculate the velocity just after bullet stuck in the wooden box for it we need to apply momentum conservation  

suppose mass of wooden box = m then mass of bullet m/1000

Pi= Pf

m*v for bullet = m*vc for common bullet and box

m/1000 * V = (m+ m/1000) * Vc ....................1

i assume bullet initial velocity = v and for bullet and box together just after hitting =vc

just after bullet stuck into wooden box bullet has energy and this energy will raise the system to some height  

so apply energy conservation here

KEi + PEi = KEf + PEf

1/2* ( m+ m/1000) *Vc^2 = ( m+ m/1000) * g*L*( 1-cos11)

L = 1 m lenght of string

from here Vc = sqrt( 2*g*L* (1-cos(11))

= sqrt( 2*9.8*1 *(1-cos11)) = 0.600089 m/s

put this into first eqution

m/1000 * V = (m+ m/1000) * Vc

1/1000*V = ( 1+1/1000) *0.600089

from here we got V = 600.689 m/s

laws of physics = energy conservation (just after bullet transfer its kinetic energy ) and momentum conservation

let me know in comment if u need further explanation


Related Solutions

A bullet is firef horizontally into an initially stationary block of wood suspended by a string...
A bullet is firef horizontally into an initially stationary block of wood suspended by a string and remains embedded in the block. The bullets mass is m=0.0085kg while that of the block is M=0.99kg. After the collision the block/bullet system swings and reaches a maximum height of h=1.15m above inital height. Neglect air resostance. A.)Enter an expression for the speed of the block/bullet system immediately after the collision in terms of defined quantities and g. b.)enter an expression for the...
A large crate is suspended by a light string. A bullet is fired horizontally into the...
A large crate is suspended by a light string. A bullet is fired horizontally into the crate and becomes firmly lodged inside it. After being struck by the bullet, the crate swings upward to a maximm height and then swings back up. Just before the collision (time t1), the crate is at rest and the bullet moves horizontally with speed v0. Immediately after the bullet becomes lodged inside the crate (time t2) the bullet and crate move together with speed...
A) A 12.0-g bullet is fired horizontally into a 113-g wooden block that is initially at...
A) A 12.0-g bullet is fired horizontally into a 113-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 149 N/m. The bullet becomes embedded in the block. If the bullet-block system compresses the spring by a maximum of 76.0 cm, what was the speed of the bullet at impact with the block? B)A 0.033-kg bullet is fired vertically at 238 m/s into a 0.15-kg baseball that is initially...
A bullet of mass m1 is fired horizontally into a wooden block of mass m2 resting...
A bullet of mass m1 is fired horizontally into a wooden block of mass m2 resting on a horizontal surface. The coefficient of kinetic friction between block and surface is μk. The bullet remains embedded in the block, which is observed to slide a distance s along the surface before stopping. What was the initial speed of the bullet? Take the free-fall acceleration to be g.
A bullet (m = 10 g) flies horizontally with an initial speed of v = 500...
A bullet (m = 10 g) flies horizontally with an initial speed of v = 500 m/s and then embeds itself in a block of wood (m = 400 g) that is at rest on a flat surface. The surface has a coefficient of kinetic friction μk = 0.4. After the impact, how far does the block of wood slide? (a) 40 m (b) 800 m (c) 8 m (d) 80 m (e) 20 m
In a city park a nonuniform wooden beam 9.00 m long is suspended horizontally by a...
In a city park a nonuniform wooden beam 9.00 m long is suspended horizontally by a light steel cable at each end. The cable at the left-hand end makes an angle of 30.0∘ with the vertical and has tension 630 N. The cable at the right-hand end of the beam makes an angle of 50.0∘ with the vertical. a) As an employee of the Parks and Recreation Department, you are asked to find the weight of the beam. b) Find...
A bullet of mass m = 29 g is fired into a wooden block of mass...
A bullet of mass m = 29 g is fired into a wooden block of mass M = 4.9 kg as shown in the figure below. The block is attached to a string of length 1.5 m. The bullet is embedded in the block, causing the block to then swing as shown in the figure. If the block reaches a maximum height of h = 0.27 m, what was the initial speed of the bullet?
A bullet is shot horizontally and becomes embedded in a large block, which is initially at...
A bullet is shot horizontally and becomes embedded in a large block, which is initially at rest on a horizontal surface. How far will the block slide before stopping? The mass of the bullet is 12.6 g, the mass of the block is 9.8 kg, the bullet's impact speed is 710 m/s, and the coefficient of kinetic friction between the block and the surface is 0.220. (Assume that the block does not spin after being hit with the bullet.)
A 0.004 kg bullet is fired into a 0.200 kg wooden block at rest on a...
A 0.004 kg bullet is fired into a 0.200 kg wooden block at rest on a horizontal surface. After impact, the embedded bullet block slides 8.00 m before coming to rest. If the coefficient of friction is 0.400, what is the speed of the bullet before impact? a) 96 m /s b) 112 m/s c) 286 m/s d) 404 m/s e) 812 m/s
A ball of mass M is suspended by a thin string (of negligible mass) from the...
A ball of mass M is suspended by a thin string (of negligible mass) from the ceiling of an elevator. The vertical motion of the elevator as it travels up and down is described in the statements below. Indicate for each of the situations described the relation between value of the tension in the cable, T, and the weight of the ball, Mg, or whether one Cannot tell. (Assume that there is no air, i.e., neglect the buoyancy effect of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT