In: Physics
Three vectors are given as A=<3.5, -5.3, 1.1> B=<4.5, 7.5, -7> C=<-3.9, 4.8, -6>
a) Determine the angle between A and B.
b) Determine the angle between A and C
c) Compute the dot product of B and C
d) Determine the size of the area associated with vectors B and C.
e) Determine the quantity (B (dot)(A(cross)C))
The given vectors in coordinate form will be:
A = 3.5 i - 5.3 j + 1.1 k
B = 4.5 i + 7.5 j - 7 k
C = -3.9 i + 4.8 j -6 k
a)Let theta be the angle between A and B
We know that angle between two vectors is given by:
cos(theta) = (a . b)/a b
A = sqrt (3.5^2 + -5.3^2 + 1.1^2) = 6.45
B = sqrt (4.5^2 + 7.5^2 + -7^2) = 11.20
A.B = ( 3.5 i - 5.3 j + 1.1 k ).(4.5 i + 7.5 j - 7 k) = 3.5 x 4.5 - 5.3 x 7.5 - 1.1 x 7 = 15.75 - 39.75 = -31.7
cos(theta) = -31.7/(6.45 x 11.20) = 116.27 deg
Hence, theta = 116.27 deg
b) A = 6.45
C = sqrt (-3.9^2 + 4.8^2 + -6^2) = 8.62
A.C = ( 3.5 i - 5.3 j + 1.1 k ).(-3.9 i + 4.8 j - 6k) = 3.5 x -3.9 + -5.3 x 4.8 + 1.1 x -6 = -45.69
cos(alpha) = A.C/AC
alpha = cos^-1(-45.69/6.45 x 8.62) = 145.26 deg
Hence, alpha = 145.26 deg
C)B.C = (4.5 i + 7.5 j - 7 k).(-3.9 i + 4.8 j - 6k) = 4.5 x -3.9 + 7.5 x 4.8 + -7 x -6 = 60.45
Hence, B.C = 60.45 units
D)The size of area will be equal to the cross product, so
BxC = (4.5 i + 7.5 j - 7 k) x (-3.9 i + 4.8 j - 6k) = i (7.5 x -6 - (-7) x 4.8) - j (4.5 x -6 - (-7) x 3.9) + k (4.5 x 4.8 - 7.5 x -3.9)
BxC = i (-45 + 33.6) -j(-27 -27.3) + k(21.6 + 29.25) = (-11.4 i + 54.3 j + 50.85 k)
BxC = (-11.4 i + 54.3 j + 50.85 k)
A = lBxCl = sqrt (-11.4^2 + 54.3^2 + 50.85^2) = 75.26
units^2
Hence, A = 75.26 units^2