In: Finance
he following information indicates percentage returns for stocks L and M over a 6-year period:
Year |
Stock L Returns |
Stock M Returns |
1 |
14.79% |
20.57% |
2 |
14.3% |
18.19% |
3 |
16.47% |
16.2% |
4 |
17.86% |
14.43% |
5 |
17.6% |
12.53% |
6 |
19.39% |
10.98% |
In combining [L−M] in a single portfolio, stock M would receive 60% of capital funds.
Furthermore, the information below reflects percentage returns for assets F, G, and H over a 4-year period, with asset F being the base instrument:
Year |
Asset F Returns |
Asset G Returns |
Asset H Returns |
1 |
16.23% |
17.04% |
14.1% |
2 |
17.48% |
16.33% |
15.32% |
3 |
18.11% |
15.41% |
16.2% |
4 |
19.25% |
14.1% |
17.22% |
Using these assets, you have a choice of either combining [F−G] or [F−H] in a single portfolio, on an equally-weighted basis.
Required: Calculate the absolute percentage difference in the coefficient of variation (CV) between the stock portfolio [L−M] and the portfolio which outlines the optimal combination of assets.
Answer% Do not round intermediate calculations. Input your answer as a percent rounded to 2 decimal places (for example: 28.31%).
In order to calculate the Coefficient of Variation we need to calculate the mean and standard deviation of the portfolios.
Coefficient of Variation = Standard Deviation / Mean
Where Mean = Sum of the returns / No of returns
Standard Deviation = rootover (x - mean of x) ^2 / n considering population
Portfolio return = sum of (Weight of stocks in portfolio * Expected return of portfolio )
Standard Deviation of the Portfolio = ( w1^2*mean of portfolio1 ^2 + w2^2mean of portfolio2 ^2 + 2 * + 2* w1*w2*Covariance between the stocks)
In order to calculate the mean and standard deviation of the portfoilio [ L- M]
We need to calculate the mean and standard deviation of the individual stock L & M
Mean for Stock L = 99.43 / 6 = 16.57
Mean for Stock M = 93.22/ 6 = 15.54
Standard deviation for stock L = (17.91 / 6 )^0.5 = 1.73
Standard deviation for stock M= (76.27 / 6)^0.5 = 3.57
Covariance between Stock L & Stock M = -35.51/ 6 = 5.92
Mean for Portfolio [ L-M] = 0.4 * 16.57 + 0.6 * 15.54 = 15.95%
Standard Deviation of Portfolio[ L-M] = ( 0.4^2*1.73^2 + 0.6^2*3.57^2 + 2*0.4*0.6*-5.92) ^0.5= 3.59%
Coefficient of Variation for Portfolio[ L-M] = 3.59/15.95 = 0.14
Mean for Stock F = 70.65 / 4 = 17.66
Standard deviation for stock F = ( 11.16 / 4 )^0.5 = 1.67
Mean for Stock G = 63.12/4 = 15.78
Standard deviation for stock G = ( 5.34 / 4) ^0.5 = 1.16
Mean for Stock H = 63.07/4 = 15.77
Standard deviation for stock H = (5.42/4)^0.5 = 1.16
Covariance between Stock F & Stock G = -4.60/4 = 1.15
Covariance between Stock F & Stock H = 6.75/4 = 1.69
Mean for Portfolio [ F-G] = 0.5 * 17.66 + 0. 5* 15.78 = 16.72%
Standard Deviation of Portfolio[F-G] = ( 0.5^2*1.67^2 + 0.5^2*1.16^2 + 2*0.5*0.5*-1.15) ^0.5= 0.46%
Coefficient of Variation for Portfolio[F-G] = 0.46/16.72 = 0.03
Mean for Portfolio [ F-H] = 0.5 * 17.66 + 0.5 * 15.77 = 16.53%
Standard Deviation of Portfolio[ F-H] = ( 0.5^2*1.67^2 + 0.5^2*1.16^2 + 2*0.5*0.5*1.69) ^0.5= 1.74%
Coefficient of Variation for Portfolio[ F-H] = 1.74 / 16.53 = 0.11
portfolio which outlines the optimal combination of assets is the portfolio having lower Coefficient of Variation
Portfolio [ F – G ] has lower Coefficient of Variation hence it is optimal Portfolio
SO we need to calculate the difference between Coefficient of Variation of portfolio [ L-M] & Portfolio [ F-G]
Difference in Coefficient of Variation = 0.14 – 0.03 = 0.11
% Difference in Coefficient of Variation = 0.11 / 0.14 * 100 = 78.57%
Years | Return on Stock L ( X) | A=(X - MEAN OF X) | B =(X - MEAN OF X) ^2 | Return on Stock M ( Y) | C=(Y - MEAN OF Y) | D = (Y - MEAN OF Y) ^2 | A*C | |
1 | 14.85 | -1.721666667 | 2.964136111 | 20.79 | 5.253333333 | 27.59751111 | -9.044488889 | |
2 | 14.34 | -2.231666667 | 4.980336111 | 18.7 | 3.163333333 | 10.00667778 | -7.059505556 | |
3 | 16.02 | -0.551666667 | 0.304336111 | 16.62 | 1.083333333 | 1.173611111 | -0.597638889 | |
4 | 17.1 | 0.528333333 | 0.279136111 | 14.21 | -1.326666667 | 1.760044444 | -0.700922222 | |
5 | 17.7 | 1.128333333 | 1.273136111 | 12.53 | -3.006666667 | 9.040044444 | -3.392522222 | |
6 | 19.42 | 2.848333333 | 8.113002778 | 10.37 | -5.166666667 | 26.69444444 | -14.71638889 | |
Total | 99.43 | 17.91408 | 93.22 | 76.27233 | -35.51146667 |
Years | Return on Stock F ( X) | A=(X - MEAN OF X) | B =(X - MEAN OF X) ^2 | Return on Stock G ( Y) | C=(Y - MEAN OF Y) | D = (Y - MEAN OF Y) ^2 | A*C | |
1 | 16.01 | -0.561666667 | 0.315469444 | 17.42 | 1.883333333 | 3.546944444 | -1.057805556 | |
2 | 17.06 | 0.488333333 | 0.238469444 | 16.1 | 0.563333333 | 0.317344444 | 0.275094444 | |
3 | 18.17 | 1.598333333 | 2.554669444 | 15.24 | -0.296666667 | 0.088011111 | -0.474172222 | |
4 | 19.41 | 2.838333333 | 8.056136111 | 14.36 | -1.176666667 | 1.384544444 | -3.339772222 | |
Total | 70.65 | 11.16474 | 63.12 | 5.33684 | -4.596655556 |
Years | Return on Stock F ( X) | A=(X - MEAN OF X) | B =(X - MEAN OF X) ^2 | Return on Stock H ( Y) | C=(Y - MEAN OF Y) | D = (Y - MEAN OF Y) ^2 | A*C | |
1 | 16.01 | -0.561666667 | 0.315469444 | 14.39 | -1.146666667 | 1.314844444 | 0.644044444 | |
2 | 17.06 | 0.488333333 | 0.238469444 | 15.04 | -0.496666667 | 0.246677778 | -0.242538889 | |
3 | 18.17 | 1.598333333 | 2.554669444 | 16.29 | 0.753333333 | 0.567511111 | 1.204077778 | |
4 | 19.41 | 2.838333333 | 8.056136111 | 17.35 | 1.813333333 | 3.288177778 | 5.146844444 | |
Total | 70.65 | 11.16474 | 63.07 | 5.41721 | 6.752427778 |