In: Physics
Q: In an elastic collision between two bodies of equal mass, with body 2 initially at rest, body 1 moves off at angle θ relative to the direction of its initial velocity and body 2 at angle φ. The sine of the sum of θ and φ, sin(θ + φ), is equal to.....................
Question options:
a). 0.
b). 0.500.
c). 0.707.
d). 0.866.
e). 1.00.
=> I tried but it's not A or D so maybe someone can help.
=> Answer left is B, C, E
momentum before collsion = momentum after collison
along x axis
m1*v1 = m1*v1'*costheta + m2*v2'*cosphi
m1 = m2
v1 = v1'*costheta + v2'*cosphi .............(1)
v2'*cosphi = v1 - v1'*costheta
------------------------
along y axis
0 = m1*v1'*sintheta - m2*v2'*sinphi
m1 = m2
v2'*sinphi = v1'*sintheta ..................(2)
1^2 + 2^2
v2'^2 = v1^2 + v1'^2 -2*v1*v1'*costheta
from energy conservation
(1/2)*m1*v1^2 = (1/2)*m1*v1'^2 + (1/2)*m2*v2'^2
v1^2 = v1'^2 + v2'^2
v2'^2 = v1^2 - v1'^2
v1^2 - v1'^2 = v1^2 + v1'^2 -2*v1*v1'*costheta
2*v1'^2 = 2*v1*v1'*costheta
v1' = v1*costheta
from 2
v2' = v1*costheta*sintheta/sinphi
from 1
v1 = v1*costheta*costheta + v1*costheta*sintheta*cosphi/sinphi
sinphi = sinphi*costheta*costheta + cosphi*sintheta*costheta
sinphi = sinphi*(costheta)^2 + cosphi*sintheta*costheta
sinphi = sinphi*(costheta)^2 + sqrt(1-(sinphi)^2) *sqrt(1-(costheta)^2)*costheta
sinphi = sinphi*(costheta)^2 + sqrt(1 - (costheta)^2 - (sinphi)^2 +
(costheta*sinphi)^2)*costheta
sinphi = sinphi*(costheta)^2 + (costheta*sinphi)*costheta
sinphi = sinphi*(costheta)^2 + (costheta)^2*sinphi
2*(costheta)^2 = 1
theta = 45 degrees
phi = 45 degrees
sn(theta+phi)= 1 <<<------answer
OPTION (e)