Question

In: Chemistry

PART A) A 50.0-mL volume of 0.15 mol L−1 HBr is titrated with 0.25 mol L−1...

PART A) A 50.0-mL volume of 0.15 mol L−1 HBr is titrated with 0.25 mol L−1 KOH. Calculate the pH after the addition of 15.0 mL of KOH.

Express your answer numerically.

B) A 75.0-mL volume of 0.200 mol L−1 NH3 (Kb=1.8×10−5) is titrated with 0.500 mol L−1 HNO3. Calculate the pH after the addition of 28.0 mL of HNO3.

Express your answer numerically.

C)A 52.0-mL volume of 0.350 mol L−1 CH3COOH (Ka=1.8×10−5) is titrated with 0.400 mol L−1 NaOH. Calculate the pH after the addition of 17.0 mL of NaOH.

Express your answer numerically.

Solutions

Expert Solution


Related Solutions

Part A A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate...
Part A A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate the pH after the addition of 18.0 mL of KOH. Part B A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5) is titrated with 0.500 M HNO3. Calculate the pH after the addition of 13.0 mL of HNO3. Part A A 52.0-mL volume of 0.35 M CH3COOH (Ka=1.8×10−5) is titrated with 0.40 M NaOH. Calculate the pH after the addition of 25.0 mL of NaOH.
Part B A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate...
Part B A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate the pH after the addition of 13.0 mL of KOH. Express your answer numerically Part C A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5) is titrated with 0.500 M HNO3. Calculate the pH after the addition of 21.0 mL of HNO3. Express your answer numerically. Part D A 52.0-mL volume of 0.35 M CH3COOH (Ka=1.8×10−5) is titrated with 0.40 M NaOH. Calculate the pH...
A) A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate the...
A) A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate the pH after the addition of 20.0 mL of KOH. B) A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5) is titrated with 0.500 M HNO3. Calculate the pH after the addition of 28.0 mL of HNO3. C) A 52.0-mL volume of 0.35 M CH3COOH (Ka=1.8×10−5) is titrated with 0.40 M NaOH. Calculate the pH after the addition of 15.0 mL of NaOH.
partb a)A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate the...
partb a)A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate the pH after the addition of 13.0 mL of KOH. Express your answer numerically. Part b) A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5) is titrated with 0.500 M HNO3. Calculate the pH after the addition of 15.0 mL of HNO3. Express your answer numerically.Part c) A 52.0-mL volume of 0.35 M CH3COOH (Ka=1.8×10−5) is titrated with 0.40 M NaOH. Calculate the pH after the...
A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate the pH...
A 50.0-mL volume of 0.15 M HBr is titrated with 0.25 M KOH. Calculate the pH after the addition of 13.0 mL of KOH. Express your answer numerically. A 75.0-mL volume of 0.200 M NH3 (Kb=1.8×10−5) is titrated with 0.500 M HNO3. Calculate the pH after the addition of 15.0 mL of HNO3. Express your answer numerically. A 52.0-mL volume of 0.35 M CH3COOH (Ka=1.8×10−5) is titrated with 0.40 M NaOH. Calculate the pH after the addition of 33.0 mL...
50.0 mL of 2.00 mol/L HNO3 solution and 50.0 mL of 1.00 mol/L NaOH solution, both...
50.0 mL of 2.00 mol/L HNO3 solution and 50.0 mL of 1.00 mol/L NaOH solution, both at 20.0 degree Celsius, were mixed in a calorimeter. Calculate the molar heat of neutralization of HNO3 in kJ/mol if: (1) final temperature was 28.9 degree Celsius; (2) the mass of the overall solution was 102.0 g; (3) the heat capacity of the calorimeter was 25.0 J/C; (4) and assume that the specific heat of solution is the same as water, 4.184 J/(g C);
Part C A 75.0-mL volume of 0.200 mol L−1 NH3 (Kb=1.8×10−5Kb=1.8×10−5) is titrated with 0.500 mol...
Part C A 75.0-mL volume of 0.200 mol L−1 NH3 (Kb=1.8×10−5Kb=1.8×10−5) is titrated with 0.500 mol L−1 HNO3. Calculate the pH after the addition of 28.0 mL of HNO3. Express your answer numerically. Part D A 52.0 mL volume of 0.350 mol L−1 CH3COOH (Ka=1.8×10−5Ka=1.8×10−5) is titrated with 0.400 mol L−1 NaOH. Calculate the pH after the addition of 15.0 mL of NaOH. Express your answer numerically.
A 12.9 mL solution of 0.100 mol L-1 HOCl is titrated using 0.150 mol L-1 NaOH....
A 12.9 mL solution of 0.100 mol L-1 HOCl is titrated using 0.150 mol L-1 NaOH. What is the pH of the solution after 5.18 mL of the NaOH solution is added? Express your answer to 2 decimal places. You have 5 attempts at this question. Remember you can find KA and/or KB values in your textbook in chapter 15.
A 18.6 mL solution of 0.100 mol L-1 NaOH is titrated using 0.150 mol L-1 HCl....
A 18.6 mL solution of 0.100 mol L-1 NaOH is titrated using 0.150 mol L-1 HCl. What is the pH of the solution after 15.3 mL of the HCl solution is added?
Consider the titration of 70 ml of 0.25 M hydrazine, N2H4 titrated with 0.35 M HBr....
Consider the titration of 70 ml of 0.25 M hydrazine, N2H4 titrated with 0.35 M HBr. ( Kb= 1.3 x 10-6). A. Write the reaction equation for above reaction. B. Calculate the volume of HBr required to reach the end point. C. Caculate the pH before addition of any acid. D. Calculate pH after addition of 20 mL of HBrI. E. Caculate pH after addition of 25 mL of HBr. F. Caculate pH at the end point. G. Calculate pH...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT