Question

In: Chemistry

Consider the rotational contribution to the heat capacity of a gas. The rotational temperatures for H2,...

Consider the rotational contribution to the heat capacity of a gas. The rotational temperatures for H2, O2, and CH4 are 85.4, 2.06, and 15, respectively. At 120 K, which molecule will deviate most from the classical limit?

a) All threee are at the classical limit
b) H2
c) O2
d) CH4

The answer is b).
Please explain why.

Solutions

Expert Solution


Related Solutions

The ideal gas heat capacity of nitrogen varies with temperature. It is given by: Cp =...
The ideal gas heat capacity of nitrogen varies with temperature. It is given by: Cp = 29.42-(2.170 *10-3) T + (0.0582*10-5) T2 + (1.305*10-8) T3 – (0.823*10-11) T4. T is in K and Cp is in Joule/(mole K). Assuming that N2 is an ideal gas: A) How much internal energy (per mole) must be added to nitrogen to increase its temperature from 450 to 500 K. B) Repeat part A for an initial temperature of 273 K and final temperature...
Heat Capacity Learning Goal: To understand the concepts of heat capacity, specific heat, and molar heat...
Heat Capacity Learning Goal: To understand the concepts of heat capacity, specific heat, and molar heat capacity. Heat capacity, C, is the amount of energy required to raise the temperature of a substance by exactly 1 degree Celsius. The energy needed to warm an object increases as the mass of that object increases. We see this in our everyday life. For example, we know that it takes much more energy to heat a large tank of water than a small...
3.0 moles of an ideal gas with a molar heat capacity at constant volume of 4.9...
3.0 moles of an ideal gas with a molar heat capacity at constant volume of 4.9 cal/(mol·K) and a molar heat capacity at constant pressure of 6.9 cal/(mol·K) starts at 300 K and is heated at constant pressure to 320 K, then cooled at constant volume to its original temperature. How much heat flows into the gas during this two-step process?
**URGENT** find the heat capacity of the partially degenerate ultrarelativistic (E=pc) electron gas.
**URGENT** find the heat capacity of the partially degenerate ultrarelativistic (E=pc) electron gas.
4a) sketch a graph of the heat capacity per molecule of a diatomic gas (e.g. N2)...
4a) sketch a graph of the heat capacity per molecule of a diatomic gas (e.g. N2) versus temperature. Label the vertical axis clearly and show room temperature on the horizontal axis. Explain in a few words the main function of the graph. 4b) Express the heat capacity per molecule or per mole (please specify which) at low temperature in real units, i.e. in Joules/ Kelvin or Joules/ mole-Kelvin. Thank you in advance for your help!
A hydrostatic system consists of 0.1 moles of an ideal gas whose specific heat capacity at...
A hydrostatic system consists of 0.1 moles of an ideal gas whose specific heat capacity at constant volume, ??, is equal to 3?2 where R is the gas constant equal to 8.31 J mol–1 K–1. Its initial pressure and volume are 32 Pa and 8 m3. In its final state, the pressure is just 1 Pa and its volume increases eightfold. The particular thermodynamic process can be represented on an indicator diagram as a straight line joining the initial and...
Entropy & heat capacity: The definitions for the entropy and heat capacity are pretty similar. So,...
Entropy & heat capacity: The definitions for the entropy and heat capacity are pretty similar. So, what is actually the difference between dS=dq/T and cp = dq/dT? Apply a simple and plausible example to illustrate the different nature of S and cp.
4.1) A perfect gas has a constant volume molar heat capacity of CV ,m  1.5...
4.1) A perfect gas has a constant volume molar heat capacity of CV ,m  1.5  R and a constant pressuremolarheatcapacityofCp,m 2.5R.Fortheprocessofheating2.80molofthisgaswitha 120 W heater for 65 seconds, calculate a) q, w, T, and U for heating at a constant volume, b) q, w, T, and H for heating at a constant pressure. 4.2) Determine the heat capacity Cp and the molar heat capacity Cp,m of a solid sample from the observation that transferring the sample with n =...
A perfect gas has a constant molar volume heat capacity of Cvm=1.5R and a constant pressure...
A perfect gas has a constant molar volume heat capacity of Cvm=1.5R and a constant pressure molar heat capacity of Cpm=2.5R. For the process of heating 2.80 mol of this gas with a 120 W heater for 65 seconds, calculate: a) q, w, delta(T), and delta(U) for heating at a constant volume b) q, w, delta(T), and delta(H) for heating at a constant pressure
Take the heat capacity of ice as 2.108 J/(g*C) and the heat capacity of water as...
Take the heat capacity of ice as 2.108 J/(g*C) and the heat capacity of water as 4.184 J/(g*C) for this problem. For water, DHfus = 6.001 kJ/mol at 0 C. a. A 10.0 gram ice cube at -10.0 C is placed into 45.0 mL of water at 40 C. Determine the final physical state and temperature of the result. Calculate DS for the ice cube and the surrounding water, and Use the value DStot to explain why this process is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT