Question

In: Statistics and Probability

A person’s blood glucose level and diabetes are closely related. Let X be a random variable...

A person’s blood glucose level and diabetes are closely related. Let X be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable X will have a distribution that is approximately normal with mean µ = 90 and standard deviation σ = 20. (Round your answers to three decimal places.)

(A) (3 points) What is the probability that X is greater than 90? (B) (3 points) What is the probability that X is between 70 and 110? (C) (3 points) What is the probability that X is between 55 and 100? (D) (3 points) What is the probability that X is less than 50 or greater than 90? (E) (3 points) What is the probability that X is less than 85?

Solutions

Expert Solution


Related Solutions

A person's blood glucose level and diabetes are closely related. Let x be a random variable...
A person's blood glucose level and diabetes are closely related. Let x be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable x will have a distribution that is approximately normal with mean μ = 81 and standard deviation σ = 25. Note: After 50 years of age, both the mean and standard deviation tend to increase. For an adult (under 50) after a...
A person's blood glucose level and diabetes are closely related. Let x be a random variable...
A person's blood glucose level and diabetes are closely related. Let x be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable x will have a distribution that is approximately normal with mean μ = 90 and standard deviation σ = 27. Note: After 50 years of age, both the mean and standard deviation tend to increase. For an adult (under 50) after a...
A person's blood glucose level and diabetes are closely related. Let x be a random variable...
A person's blood glucose level and diabetes are closely related. Let x be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable x will have a distribution that is approximately normal with mean μ = 89 and standard deviation σ = 21. Note: After 50 years of age, both the mean and standard deviation tend to increase. For an adult (under 50) after a...
A person's blood glucose level and diabetes are closely related. Let x be a random variable...
A person's blood glucose level and diabetes are closely related. Let x be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable x will have a distribution that is approximately normal with mean μ = 83 and standard deviation σ = 22. Note: After 50 years of age, both the mean and standard deviation tend to increase. For an adult (under 50) after a...
A person's blood glucose level and diabetes are closely related. Let x be a random variable...
A person's blood glucose level and diabetes are closely related. Let x be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable x will have a distribution that is approximately normal with mean μ = 83 and standard deviation σ = 22. Note: After 50 years of age, both the mean and standard deviation tend to increase. For an adult (under 50) after a...
A person's blood glucose level and diabetes are closely related. Let x be a random variable...
A person's blood glucose level and diabetes are closely related. Let x be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable x will have a distribution that is approximately normal with mean μ = 86 and standard deviation σ = 29. Note: After 50 years of age, both the mean and standard deviation tend to increase. For an adult (under 50) after a...
A person's blood glucose level and diabetes are closely related. Let x be a random variable...
A person's blood glucose level and diabetes are closely related. Let x be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable x will have a distribution that is approximately normal with mean μ = 81 and standard deviation σ = 21. Note: After 50 years of age, both the mean and standard deviation tend to increase. For an adult (under 50) after a...
A person's blood glucose level and diabetes are closely related. Let x be a random variable...
A person's blood glucose level and diabetes are closely related. Let x be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable x will have a distribution that is approximately normal with mean μ = 82 and standard deviation σ = 27. Note: After 50 years of age, both the mean and standard deviation tend to increase. For an adult (under 50) after a...
A person's blood glucose level and diabetes are closely related. Let x be a random variable...
A person's blood glucose level and diabetes are closely related. Let x be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable x will have a distribution that is approximately normal with mean μ = 83 and standard deviation σ = 24. Note: After 50 years of age, both the mean and standard deviation tend to increase. For an adult (under 50) after a...
A person's blood glucose level and diabetes are closely related. Let x be a random variable...
A person's blood glucose level and diabetes are closely related. Let x be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable x will have a distribution that is approximately normal with mean μ = 82 and standard deviation σ = 21. Note: After 50 years of age, both the mean and standard deviation tend to increase. For an adult (under 50) after a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT