In: Statistics and Probability
Carolina Wood Products, Inc., a major manufacturer of household furniture, is interested in predicting expenditures on furniture (FURN) for the entire United States.
| Period | FURN ($Billions) | Time | 
| Mar-07 | 61.1 | 1 | 
| Jun-07 | 59.8 | 2 | 
| Sep-07 | 59 | 3 | 
| Dec-07 | 58 | 4 | 
| Mar-08 | 56.2 | 5 | 
| Jun-08 | 58.1 | 6 | 
| Sep-08 | 59.2 | 7 | 
| Dec-08 | 61.4 | 8 | 
| Mar-09 | 63.7 | 9 | 
| Jun-09 | 67.4 | 10 | 
| Sep-09 | 71.1 | 11 | 
| Dec-09 | 74.1 | 12 | 
| Mar-10 | 77.3 | 13 | 
| Jun-10 | 80.2 | 14 | 
| Sep-10 | 82.4 | 15 | 
| Dec-10 | 85.7 | 16 | 
| Mar-11 | 88.9 | 17 | 
| Jun-11 | 92.3 | 18 | 
| Sep-11 | 95.2 | 19 | 
| Dec-11 | 99.6 | 20 | 
| Mar-12 | 100.4 | 21 | 
| Jun-12 | 104.4 | 22 | 
| Sep-12 | 108.3 | 23 | 
| Dec-12 | 110.7 | 24 | 
| Mar-13 | 111.8 | 25 | 
| Jun-13 | 113.2 | 26 | 
| Sep-13 | 116.4 | 27 | 
| Dec-13 | 117.2 | 28 | 
| Mar-14 | 122.8 | 29 | 
| Jun-14 | 127.4 | 30 | 
| Sep-14 | 129.2 | 31 | 
| Dec-14 | 132.7 | 32 | 
| Mar-15 | 136.7 | 33 | 
| Jun-15 | 138.5 | 34 | 
| Sep-15 | 138 | 35 | 
| Dec-15 | 138.7 | 36 | 
| Mar-16 | 144.4 | 37 | 
| Jun-16 | 143 | 38 | 
| Sep-16 | 142.7 | 39 | 
| Dec-16 | 139.3 | 40 | 
| Mar-17 | 41 | |
| Jun-17 | 42 | |
| Sep-17 | 43 | |
| Dec-17 | 44 | 
FURN = a + b(TIME)
| Period | Time | Trend Forecast | 
| 2017 Q1 | 41 | |
| 2017 Q2 | 42 | |
| 2017 Q3 | 43 | |
| 2017 Q4 | 44 | 
a)
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 820 | 3966.5 | 5330 | 36121.3 | 13746.35 | 
| mean | 20.50 | 99.16 | SSxx | SSyy | SSxy | 
sample size ,   n =   40  
       
here, x̅ = Σx / n=   20.50   ,
    ȳ = Σy/n =   99.16  
          
       
SSxx =    Σ(x-x̅)² =    5330.0000  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   13746.4  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   13746.4  
/   5330.000   =   2.5791
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
46.2919          
          
       
so, regression line is   Ŷ =  
46.2919   +   2.5791  
*x
b)
SSE=   (SSxx * SSyy - SS²xy)/SSxx =   
668.715
      
std error ,Se =    √(SSE/(n-2)) =   
4.195
      
correlation coefficient ,    r = Sxy/√(Sx.Sy)
=   0.9907
      
R² =    (Sxy)²/(Sx.Sy) =    0.9815
As we can see R square = 98.15 % means 98.15% variance in FURN can be explained by time period. Model is good.
C)
Predicted Y at X=   41   is  
           
   
Ŷ =   46.29192   +  
2.579053   *   41   =  
152.033
Predicted Y at X=   42   is  
           
   
Ŷ =   46.29192   +  
2.579053   *   42   =  
154.612
Predicted Y at X=   43   is  
           
   
Ŷ =   46.29192   +  
2.579053   *   43   =  
157.191
Predicted Y at X=   44   is  
           
   
Ŷ =   46.29192   +  
2.579053   *   44   =  
159.770
THANKS
revert back for doubt
please upvote