In: Statistics and Probability
The data show the time intervals after an eruption (to the next eruption) of a certain geyser. Find the regression equation, letting the height of the current eruption be the explanatory variable (denoted by x). Then use this equation to determine the predicted length of the time interval after an eruption given that the current eruption has a height of 113feet.
Height (ft), Interval after (min)
96 66
128 85
75 59
128 86
88 70
73 75
80 73
96 75
What is the regression equation?
y = _____________+______________x (Round to three decimal places as needed.
What is the predicted time of the interval?
y ≈ _____________minutes(Round to one decimal place as needed.
The statistical software output for this problem is:
Simple linear regression results:
Dependent Variable: Interval
Independent Variable: Height
Interval = 42.865183 + 0.32209233 Height
Sample size: 8
R (correlation coefficient) = 0.77793416
R-sq = 0.60518156
Estimate of error standard deviation: 6.1344219
Parameter estimates:
Parameter | Estimate | Std. Err. | Alternative | DF | T-Stat | P-value |
---|---|---|---|---|---|---|
Intercept | 42.865183 | 10.372232 | ≠ 0 | 6 | 4.1326866 | 0.0061 |
Slope | 0.32209233 | 0.10620883 | ≠ 0 | 6 | 3.0326323 | 0.023 |
Analysis of variance table for regression
model:
Source | DF | SS | MS | F-stat | P-value |
---|---|---|---|---|---|
Model | 1 | 346.0882 | 346.0882 | 9.1968586 | 0.023 |
Error | 6 | 225.7868 | 37.631133 | ||
Total | 7 | 571.875 |
Predicted values:
X value | Pred. Y | s.e.(Pred. y) | 95% C.I. for mean | 95% P.I. for new |
---|---|---|---|---|
113 | 79.261616 | 2.8563067 | (72.272485, 86.250746) | (62.703846, 95.819385) |
Hence,
Regression equation:
y = 42.865 + 0.322 x
Prediction time of the interval
y = 79.3 minutes