In: Statistics and Probability
A researcher wants to obtain an error of 30 minutes when estimating the hours of sleep a student gets at a confidence level of 90%. Use the sample standard deviation from the sleep data and determine the sample size the researcher should use to achieve the desired results.
sleep hours per person.
7 |
7 |
5 |
7 |
6 |
8 |
7 |
8 |
5 |
8 |
8 |
4 |
8 |
8 |
6 |
8 |
8 |
8 |
7 |
10 |
6 |
7 |
8 |
5 |
8 |
7 |
7 |
4 |
9 |
8 |
7 |
7 |
8 |
8 |
10 |
X | (X - X̄)² |
7 | 0.040 |
7 | 0.040 |
5 | 4.840 |
7 | 0.040 |
6 | 1.440 |
8 | 0.640 |
7 | 0.040 |
8 | 0.640 |
5 | 4.840 |
8 | 0.640 |
8 | 0.640 |
4 | 10.240 |
8 | 0.640 |
8 | 0.640 |
6 | 1.440 |
8 | 0.640 |
8 | 0.640 |
8 | 0.640 |
7 | 0.040 |
10 | 7.840 |
6 | 1.440 |
7 | 0.040 |
8 | 0.640 |
5 | 4.840 |
8 | 0.640 |
7 | 0.040 |
7 | 0.040 |
4 | 10.24 |
9 | 3.24 |
8 | 0.64 |
7 | 0.040 |
7 | 0.040 |
8 | 0.640 |
8 | 0.640 |
10 | 7.840 |
X | (X - X̄)² | |
total sum | 252 | 67.600 |
n | 35 | 35 |
sample variance = Σ(X - X̄)²/(n-1)=
67.6000 / 34.0000 =
1.9882
sample std dev = √ [ Σ(X - X̄)²/(n-1)] =
√ 1.9882 =
1.4100
--------------
Standard Deviation , σ =
1.4100
sampling error , E = 30 minutes= 0.5 hours
Confidence Level , CL= 90%
alpha = 1-CL = 10%
Z value = Zα/2 = 1.645 [excel
formula =normsinv(α/2)]
Sample Size,n = (Z * σ / E )² = ( 1.645
* 1.4100 / 0.5 ) ²
= 21.5
So,Sample Size needed=
22