In: Statistics and Probability
A researcher wants to obtain an error of 30 minutes when estimating the hours of sleep a student gets at a confidence level of 90%. Use the sample standard deviation from the sleep data and determine the sample size the researcher should use to achieve the desired results.
sleep hours per person.
| 7 | 
| 7 | 
| 5 | 
| 7 | 
| 6 | 
| 8 | 
| 7 | 
| 8 | 
| 5 | 
| 8 | 
| 8 | 
| 4 | 
| 8 | 
| 8 | 
| 6 | 
| 8 | 
| 8 | 
| 8 | 
| 7 | 
| 10 | 
| 6 | 
| 7 | 
| 8 | 
| 5 | 
| 8 | 
| 7 | 
| 7 | 
| 4 | 
| 9 | 
| 8 | 
| 7 | 
| 7 | 
| 8 | 
| 8 | 
| 10 | 
| X | (X - X̄)² | 
| 7 | 0.040 | 
| 7 | 0.040 | 
| 5 | 4.840 | 
| 7 | 0.040 | 
| 6 | 1.440 | 
| 8 | 0.640 | 
| 7 | 0.040 | 
| 8 | 0.640 | 
| 5 | 4.840 | 
| 8 | 0.640 | 
| 8 | 0.640 | 
| 4 | 10.240 | 
| 8 | 0.640 | 
| 8 | 0.640 | 
| 6 | 1.440 | 
| 8 | 0.640 | 
| 8 | 0.640 | 
| 8 | 0.640 | 
| 7 | 0.040 | 
| 10 | 7.840 | 
| 6 | 1.440 | 
| 7 | 0.040 | 
| 8 | 0.640 | 
| 5 | 4.840 | 
| 8 | 0.640 | 
| 7 | 0.040 | 
| 7 | 0.040 | 
| 4 | 10.24 | 
| 9 | 3.24 | 
| 8 | 0.64 | 
| 7 | 0.040 | 
| 7 | 0.040 | 
| 8 | 0.640 | 
| 8 | 0.640 | 
| 10 | 7.840 | 
| X | (X - X̄)² | |
| total sum | 252 | 67.600 | 
| n | 35 | 35 | 
sample variance =    Σ(X - X̄)²/(n-1)=  
67.6000   /   34.0000   =  
1.9882
          
           
sample std dev =   √ [ Σ(X - X̄)²/(n-1)] =  
√   1.9882   =      
1.4100
--------------
Standard Deviation ,   σ =   
1.4100          
       
sampling error ,    E = 30 minutes= 0.5 hours
Confidence Level ,   CL=   90%  
           
   
          
           
   
alpha =   1-CL =   10%  
           
   
Z value =    Zα/2 =    1.645   [excel
formula =normsinv(α/2)]      
       
          
           
   
Sample Size,n = (Z * σ / E )² = (   1.645  
*   1.4100 /   0.5   ) ²
=   21.5
          
           
   
          
           
   
So,Sample Size needed=      
22