Question

In: Statistics and Probability

The following hypotheses are given. H0: p ≤ 0.83 H1: p > 0.83 A sample of...

The following hypotheses are given. H0: p ≤ 0.83 H1: p > 0.83 A sample of 128 observations revealed that = 0.73. At the 0.05 significance level, can the null hypothesis be rejected?

a. State the decision rule. (Round the final answer to 3 decimal places.) Reject CorrectH0 and and accept CorrectH1 if z>... or z<

Solutions

Expert Solution

Here, we have to use one sample z test for the population proportion.

The null and alternative hypotheses for this test are given as below:

H0: p ≤ 0.83 versus Ha: p > 0.83

This is an upper tailed test.

We are given

Level of significance = α = 0.05

Critical Z value = 1.6449

(by using z-table)

Decision rule: Reject H0 if test statistic Z > 1.645

Test statistic formula for this test is given as below:

Z = (p̂ - p)/sqrt(pq/n)

Where, p̂ = Sample proportion, p is population proportion, q = 1 - p, and n is sample size

n = sample size = 128

p̂ = x/n = 0.73

p = 0.83

q = 1 - p = 0.17

Z = (p̂ - p)/sqrt(pq/n)

Z = (0.73 - 0.83)/sqrt(0.83*0.17/128)

Z = -3.0119

Test statistic = -3.0119

P-value = 0.9987

(by using z-table)

P-value > α = 0.05

So, we do not reject the null hypothesis.


Related Solutions

The following hypotheses are given. H0: π = 0.40 H1: π ≠ 0.40 A sample of...
The following hypotheses are given. H0: π = 0.40 H1: π ≠ 0.40 A sample of 120 observations revealed that p = 0.30. At the 0.05 significance level, can the null hypothesis be rejected? State the decision rule. (Negative values should be indicated by a minus sign. Round your answers to 2 decimal places.) Compute the value of the test statistic. (Negative value should be indicated by a minus sign. Round your answer to 2 decimal places.) What is your...
The following hypotheses are given. H0: π = 0.40 H1: π ≠ 0.40 A sample of...
The following hypotheses are given. H0: π = 0.40 H1: π ≠ 0.40 A sample of 120 observations revealed that p = 0.30. At the 0.05 significance level, can the null hypothesis be rejected? State the decision rule. (Negative values should be indicated by a minus sign. Round your answers to 2 decimal places.) Compute the value of the test statistic. (Negative value should be indicated by a minus sign. Round your answer to 2 decimal places.) What is your...
Given the following hypotheses: H0: μ = 440 H1: μ ≠ 440 A random sample of...
Given the following hypotheses: H0: μ = 440 H1: μ ≠ 440 A random sample of 10 observations is selected from a normal population. The sample mean was 445 and the sample standard deviation 4. Using the 0.05 significance level: State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.) 1) Reject Ho when the test statistic is outside the interval ( , ) 2.) Compute the value of the...
Given the following hypotheses: H0: μ ≤ 10 H1: μ > 10 A random sample of...
Given the following hypotheses: H0: μ ≤ 10 H1: μ > 10 A random sample of 10 observations is selected from a normal population. The sample mean was 11 and the sample standard deviation 3.2. Using the 0.100 significance level: a. State the decision rule. (Round your answer to 3 decimal places.)   Reject H0 if t >    b. Compute the value of the test statistic. (Round your answer to 3 decimal places.)   Value of the test statistic    c....
Given the following hypotheses: H0: μ = 400 H1: μ ≠ 400 A random sample of...
Given the following hypotheses: H0: μ = 400 H1: μ ≠ 400 A random sample of 12 observations is selected from a normal population. The sample mean was 407 and the sample standard deviation 6. Using the 0.01 significance level: State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.) Compute the value of the test statistic. (Round your answer to 3 decimal places.) What is your decision regarding the...
Given the following hypotheses: H0: μ = 480 H1: μ ≠ 480 A random sample of...
Given the following hypotheses: H0: μ = 480 H1: μ ≠ 480 A random sample of 14 observations is selected from a normal population. The sample mean was 488 and the sample standard deviation was 8. Using the 0.10 significance level: State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.) Compute the value of the test statistic. (Round your answer to 3 decimal places.) What is your decision regarding...
Given the following hypotheses: H0: μ ≤ 10 H1: μ > 10 A random sample of...
Given the following hypotheses: H0: μ ≤ 10 H1: μ > 10 A random sample of 10 observations is selected from a normal population. The sample mean was 12 and the sample standard deviation was 3. Using the 0.05 significance level: a.State the decision rule. (Round your answer to 3 decimal places.) b.Compute the value of the test statistic. (Round your answer to 3 decimal places.) c.What is your decision regarding the null hypothesis?
Given the following hypotheses: H0: μ = 530 H1: μ ≠ 530 A random sample of...
Given the following hypotheses: H0: μ = 530 H1: μ ≠ 530 A random sample of 9 observations is selected from a normal population. The sample mean was 535 and the sample standard deviation 8. Using the 0.05 significance level: 1. State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.) reject H0 when the test statistic is (inside/outside) the interval (_____,_____) 2. Compute the value of the test statistic....
Given the following hypotheses: H0: μ ≤ 13 H1: μ > 13 A random sample of...
Given the following hypotheses: H0: μ ≤ 13 H1: μ > 13 A random sample of 10 observations is selected from a normal population. The sample mean was 11 and the sample standard deviation 3.6. Using the 0.050 significance level: a. State the decision rule. (Round your answer to 3 decimal places.)   Reject H0 if t >    b. Compute the value of the test statistic. (Round your answer to 3 decimal places.)   Value of the test statistic    c....
The following hypotheses are given. H0 : π ≤ 0.81 H1 : π > 0.81 A...
The following hypotheses are given. H0 : π ≤ 0.81 H1 : π > 0.81 A sample of 140 observations revealed that p = 0.92. At the 0.10 significance level, can the null hypothesis be rejected? State the decision rule. (Round your answer to 2 decimal places.) Compute the value of the test statistic. (Round your answer to 2 decimal places.) What is your decision regarding the null hypothesis? Reject H0. Do not reject H0.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT