In: Finance
The table below shows the one-year return distribution of Startup Inc.
Probability | 35% | 20% | 20% | 10% | ?% |
Return | -90% | -75% | -50% | -25% | 1000% |
a. Calculate the expected return.
b. Calculate the standard deviation of the return.
c. Replace the expected return of 1000% in the last column in the table above with the expected return value that minimizes the standard deviation of the returns.
a. The expected return is %. (round to one decimal)
b. The standard deviation of the return is %. (round to one decimal)
c. The value of expected return in last column which minimizes the standard deviation of the returns is %. (round to one decimal. If negative, enter a minus sign "-".)
Solution a) Calculation of Expected Return
Probabilty (p) |
Return (x) |
Expected Return = (p) * (x) |
0.35 |
-90 |
-31.5 |
0.2 |
-75 |
-15 |
0.2 |
-50 |
-10 |
0.1 |
-25 |
-2.5 |
0.15 |
1000 |
150 |
91 |
Therefore, Expected Return = ∑ (p) * (x) = 91%
Solution 2) Calculation of Standard Deviation of the return
Probabilty (p) |
Return (x) |
Expected Return = (p) * (x) |
(x) - Expected Return |
((x) - Expected Return) ^ 2 |
((x) - Expected Return ^ 2) * (p) |
0.35 |
-90 |
-31.5 |
-181 |
32761 |
11466.35 |
0.2 |
-75 |
-15 |
-166 |
27556 |
5511.2 |
0.2 |
-50 |
-10 |
-141 |
19881 |
3976.2 |
0.1 |
-25 |
-2.5 |
-116 |
13456 |
1345.6 |
0.15 |
1000 |
150 |
909 |
826281 |
123942.15 |
91 |
146241.5 |
Standard Deviation of the return = Variance^(1/2)
= 146241.5 ^ (1/2)
= 382.42%
Solution c) Calculation of Expected Return and Standard Deviation after replacing 1000% in the last column by Expected Return value.
Probabilty (p) |
Return (x) |
Expected Return = (p) * (x) |
(x) - Expected Return |
((x) - Expected Return) ^ 2 |
((x) - Expected Return ^ 2) * (p) |
0.35 |
-90 |
-31.5 |
-44.65 |
1993.62 |
697.77 |
0.2 |
-75 |
-15 |
-29.65 |
879.12 |
175.82 |
0.2 |
-50 |
-10 |
-4.65 |
21.62 |
4.32 |
0.1 |
-25 |
-2.5 |
20.35 |
414.12 |
41.41 |
0.15 |
91 |
13.65 |
136.35 |
18591.32 |
2788.70 |
-45.35 |
3708.03 |
Standard Deviation of the return = Variance^(1/2)
= 3708.03 ^ (1/2)
= 60.89%