Question

In: Advanced Math

6a. Show that 2/n = 1/3n + 5/3n and use this identity to obtain the unit...

6a. Show that 2/n = 1/3n + 5/3n and use this identity to obtain the unit fraction decompositions of 2/25 , 2/65 , and 2/85 as given in the 2/n table in the Rhind Mathematical Papyrus.

6b. Show that 2/mn = 1/ (m ((m+n)/ 2 )) + 1/ (n ((m+n)/ 2 )) and use this identity to obtain the unit fraction decompositions of 2/7 , 2/35 , and 2/91 as given in the 2/n table in the Rhind Mathematical Papyrus.

6c. Verify that 2/ n = 1/n + 1/2n + 1/3n + 1/6n and use this identity to obtain the unit fraction decompositions of 2/101 as given in the 2/n table in the Rhind Mathematical Papyrus.

Solutions

Expert Solution


Related Solutions

1- Show that (n^3+3n^2+3n+1) / (n+1) is O (n2 ). Use the definition and proof of...
1- Show that (n^3+3n^2+3n+1) / (n+1) is O (n2 ). Use the definition and proof of big-O notation. 2- Prove using the definition of Omega notation that either 8 n is Ω (5 n ) or not. please help be with both
Calculate the Big-O time complexity. Show work 1. n^2 + 3n + 2 2. (n^2 +...
Calculate the Big-O time complexity. Show work 1. n^2 + 3n + 2 2. (n^2 + n)(n ^2 + π/2 ) 3. 1 + 2 + 3 + · · · + n − 1 + n
Derive the Sackur-Tetrode equation starting from the multiplicity givenin Ch. 2: Ω =(1/N!)(V^{N}/h^{3N})(pi^{3N/2}/3N^{2}!)(2mU)^{3N/2} The Sackur-Tetrode equation...
Derive the Sackur-Tetrode equation starting from the multiplicity givenin Ch. 2: Ω =(1/N!)(V^{N}/h^{3N})(pi^{3N/2}/3N^{2}!)(2mU)^{3N/2} The Sackur-Tetrode equation is: S=Nk[ln((V/N)((4pi*m*U)/(3Nh^{2}))^{3/2})+(5/2)]
(a) Find the limit of {(1/(n^(3/2)))-(3/n)+2} and use an epsilon, N argument to show that this...
(a) Find the limit of {(1/(n^(3/2)))-(3/n)+2} and use an epsilon, N argument to show that this is indeed the correct limit. (b) Use an epsilon, N argument to show that {1/(n^(1/2))} converges to 0. (c) Let k be a positive integer. Use an epsilon, N argument to show that {a/(n^(1/k))} converges to 0. (d) Show that if {Xn} converges to x, then the sequence {Xn^3} converges to x^3. This has to be an epsilon, N argument [Hint: Use the difference...
Find the value of ∑(−1)^n/(3n+1) from n=0 to ∞
Find the value of ∑(−1)^n/(3n+1) from n=0 to ∞
If f(n) = 3n+2 and g(n) = n, then Prove that f(n) = O (g(n))
If f(n) = 3n+2 and g(n) = n, then Prove that f(n) = O (g(n))
Use generating functions to solve the following recurrence relation: an = 2an−1 + 3n , n...
Use generating functions to solve the following recurrence relation: an = 2an−1 + 3n , n ≥ 1 a0 = 2
Show that (1 + 2 +. . .+n)2 > 12 +. . .+ n2, for n...
Show that (1 + 2 +. . .+n)2 > 12 +. . .+ n2, for n ≥ 2.
a) Let T(n) be a running time function defined as T(n) = 3n^2 + 2n +...
a) Let T(n) be a running time function defined as T(n) = 3n^2 + 2n + 5, is this ϴ(n^2 )? Explain prove your answer using the definitions of big-o and omega notations. b) Solve the following recurrence relations using Master theorem. a. ?(?) = 3? ( ?/3 ) + ? b. ?(?) = 5?( ?/2 ) + 2?^2 please help them with both
Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT