Question

In: Economics

Chapters 8. Slutsky Equation 1. Consider the utility function u(x1, x2) = x1x2. Suppose that the...

Chapters 8. Slutsky Equation 1. Consider the utility function u(x1, x2) = x1x2. Suppose that the prices are given 1 for each good and the income is 10. (1) Find out the optimal choice(s). Figure out the utility level at this optimal choice. (2) Suppose now that the price of good 2 increases from 1 to 2. Figure out the value of the bundle that you obtained in (1) under the new prices. Draw the budget set associated with this value and the new prices. (3) Find out the optimal choice(s) given the budget set in (2). (4) Find the optimal choice(s) under the new prices and the initial income of 10. (5) What is the (Slutsky) substitution effect on good 2? What is the income effect on good 2? (6) Consider the utility level you calculated in (1). What is the bundle that gives you the same utility while minimizing the expenditure under the new prices? (7) What is the (Hicksian) substitution effect on good 2? (8) Suppose that the price of good 2 is now given p2 > 0 while the price of good 1 is fixed at 1. Figure out the Marshallian demand curve of good 2. (9) Continuing from (8), figure out the Hicksian demand curve of good 2 associated with utility level 25. (10) Is the Hicksian demand curve from (9) always steeper than the Marshallian demand curve from (9) at x2 = 5 in this example?

Please answer number 5-10 thank you...:)

Solutions

Expert Solution

Hicksian demnad curve is red color and marshallian demand curve is blue color and hicksian demand curve is always steeper than marshallian demnad curve as hichsian demand curve only accounts for substitution effect whereas marshallian demand curve accounts for both income and substitution effect.


Related Solutions

1. Amy's utility function is U(x1 , x2) = x1x2, where x1 and x2 are Amy's...
1. Amy's utility function is U(x1 , x2) = x1x2, where x1 and x2 are Amy's consumption of banana and apple, respectively. The price of apples is $1, the price of bananas is $2, and his income is $40. (a) Find out the Amy's optimal consumption bundle. (Note that Amy's utility function is Cobb-Douglas.) (b) If the price of apples now increases to $6 and the price of bananas stays constant, what would Amy's income have to be in order...
Charlie’s utility function is U(x1, x2) = x1x2, where x1 and x2 are the Charlie’s consumption...
Charlie’s utility function is U(x1, x2) = x1x2, where x1 and x2 are the Charlie’s consumption of banana and apple, respectively. The price of apples is $1, the price of bananas is $2, and his income is $40. (a) Find out the Charlie’s optimal consumption bundle. (Note that Charlie’s utility function is Cobb-Douglas.) (b) If the price of apples now increases to $6 and the price of bananas stays constant, what would Charlie’s income have to be in order to...
Amy's utility function is U(x1 , x2) = x1x2, where x1 and x2 are Amy's consumption...
Amy's utility function is U(x1 , x2) = x1x2, where x1 and x2 are Amy's consumption of banana and apple, respectively. The price of apples is $1, the price of bananas is $2, and his income is $40. (a) Find out the Amy's optimal consumption bundle. (Note that Amy's utility function is Cobb-Douglas.) (b) If the price of apples now increases to $6 and the price of bananas stays constant, what would Amy's income have to be in order to...
Bilal’s utility function is U(x1; x2) = x1x2 (assume x1 and x2 are normal goods). The...
Bilal’s utility function is U(x1; x2) = x1x2 (assume x1 and x2 are normal goods). The price of good 1 is P1, the price of good 2 is P2, and his income is $m a day. The price of good 1 suddenly falls. (a)Represent, using a clearly labelled diagram, the hicks substitution effect, the income effect and the total effect on the demand of good 1. (b) On a separate diagram, represent using a clearly labelled diagram, the slutsky substitution...
Slutsky Equation: Exercise 12: Assume preferences can be represented by the following utility function: u(x1, x2)...
Slutsky Equation: Exercise 12: Assume preferences can be represented by the following utility function: u(x1, x2) = x1 x22 a. Are preferences monotonic? Justify. b. Set up the consumer’s utility maximization problem for prices p1, p2 and income m (the general case) c. Solve the problem. You will obtain demand functions x∗1 (p1 , p2 , m) and x∗2 (p1, p2, m) in terms of the parameters (p1, p2, m) . Obtain price elasticity of demand for good one. Obtain...
Sara’s utility function is u(x1, x2) = (x1 + 2)(x2 + 1). a. Write an equation...
Sara’s utility function is u(x1, x2) = (x1 + 2)(x2 + 1). a. Write an equation for Sara’s indifference curve that goes through the point (2,8). b. Suppose that the price of each good is 1 and that Clara has an income of 11. Draw her budget line. Can Sara achieve a utility of 36 with this budget? Why or why not? c. Evaluate the marginal rate of substitution MRS at (x1, x2) = (1, 5). Provide an economic interpretation...
Chizzy’s has a utility function U(x1,x2) = x1x2. He originally faces the prices ($1,$1) and has...
Chizzy’s has a utility function U(x1,x2) = x1x2. He originally faces the prices ($1,$1) and has income $50. If the price of good 1 falls $0.5. What is the change in consumer surplus, compensating and equivalent variation?
Suppose a consumer seeks to maximize the utility function U (x1; x2) = (-1/x1)-(1/x2) ; subject...
Suppose a consumer seeks to maximize the utility function U (x1; x2) = (-1/x1)-(1/x2) ; subject to the budget constraint p1x1 + p2x2 = Y; where x1 and x2 represent the quantities of goods consumed, p1 and p2 are the prices of the two goods and Y represents the consumer's income. (a)What is the Lagrangian function for this problem? Find the consumer's demand functions, x1 and x2 . (b) Show the bordered Hessian matrix, H for this problem. What does...
Burt’s utility function is U(x1, x2)= min{x1,x2}. Suppose the price of good 1 is p1, the...
Burt’s utility function is U(x1, x2)= min{x1,x2}. Suppose the price of good 1 is p1, the price of good p2, the income is y. a. Derive ordinary demand functions. b. Draw indifference curves and budget line for the case when the price of good 1 is 10, the price of good 2 is 20, the income is 1200. c. Find the optimal consumption bundle.
Sophie's utility function is given as U = 2(x1)^(1/2) + 8(x2) where x1 and x2 represent...
Sophie's utility function is given as U = 2(x1)^(1/2) + 8(x2) where x1 and x2 represent the two goods Sophie consumes. Sophie's income is $3400 and the prices are given as x1 = $2 and x2 = $160 a) derive & represent in two separate diagrams the demand for x1 and x2 ( for any income and prices) b) If Sophie's income is increased to $6600, what is the income effect on x1? Is x2 a normal good? Justify your...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT