In: Statistics and Probability
The following table compares the completion percentage and interception percentage of 5 NFL quarterbacks.
Completion Percentage   Interception Percentage
55   4.3
59   2.2
61   1.9
62   1.8
66   1.7
Step 1 of 5: Calculate the sum of squared errors (SSE). Use the values b0=16.4513and b1=−0.2322 for the calculations. Round your answer to three decimal places.
Step 2 of 5: Calculate the estimated variance of errors, se2. Round your answer to three decimal places.
Step 3 of 5: Calculate the estimated variance of slope, s^2b1. Round your answer to three decimal places.
Step 4 of 5: Construct the 98% confidence interval for the slope. Round your answers to three decimal places.
Step 5 of 5: Construct the 99% confidence interval for the slope. Round your answers to three decimal places.
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 303.00 | 11.90 | 65.20 | 4.75 | -15.14 | 
| mean | 60.60 | 2.38 | SSxx | SSyy | SSxy | 
Sample size,   n =   5  
   
here, x̅ = Σx / n=   60.600  
       
ȳ = Σy/n =   2.380      
   
SSxx =    Σ(x-x̅)² =    65.2000  
   
SSxy=   Σ(x-x̅)(y-ȳ) =   -15.1  
   
          
   
estimated slope , ß1 = SSxy/SSxx =  
-15.14/65.2=   -0.2322  
   
intercept,ß0 = y̅-ß1* x̄ =   2.38- (-0.2322
)*60.6=   16.4513   
          
   
Regression line is, Ŷ=   16.4513 + (  
-0.2322   )*x
SSE= (SSxx * SSyy - SS²xy)/SSxx = 1.232
.............
b)
std error ,Se =    √(SSE/(n-2)) =   
0.6409
Se^2 = 0.411
...........
c)
estimated variance of slope ,    Se²(ß1) = Se²/Sxx =
   0.006
....
d)
α=   0.02      
       
t critical value=   t α/2 =   
4.541   [excel function: =t.inv.2t(α/2,df) ]  
   
estimated std error of slope = Se/√Sxx =   
0.6409/√65.2=   0.079      
   
          
       
margin of error ,E= t*std error =    4.541  
*   0.079   =   0.360419
estimated slope , ß^ =    -0.2322  
           
          
       
lower confidence limit = estimated slope - margin of error
=   -0.2322   -   0.360  
=   -0.5926
upper confidence limit=estimated slope + margin of error
=   -0.2322   +   0.360  
=   0.1282
98% CI ( - 0.593 , 0.128)
..............
E)
α=   0.01      
       
t critical value=   t α/2 =   
5.841   [excel function: =t.inv.2t(α/2,df) ]  
   
estimated std error of slope = Se/√Sxx =   
0.6409/√65.2=   0.079      
   
          
       
margin of error ,E= t*std error =    5.841  
*   0.079   =   0.463623
estimated slope , ß^ =    -0.2322  
           
          
       
lower confidence limit = estimated slope - margin of error
=   -0.2322   -   0.464  
=   -0.6958
upper confidence limit=estimated slope + margin of error
=   -0.2322   +   0.464  
=   0.2314  
99 % CI ( -0.696 , 0.231)
..............
Please let me know in case of any doubt.
Thanks in advance!
Please upvote!