In: Statistics and Probability
The following table compares the completion percentage and interception percentage of 5 NFL quarterbacks.
Completion Percentage | 59 | 59 | 59 | 60 | 61 |
Interception Percentage | 4.5 | 3.9 | 3.4 | 2.1 | 2 |
Step 1 of 5: Calculate the sum of squared errors (SSE). Use the values b0=67.2500 and b1=−1.0750 for the calculations. Round your answer to three decimal places.
Step 2 of 5: Calculate the estimated variance of errors, s2e. Round your answer to three decimal places
Step 3 of 5: Calculate the estimated variance of slope, s2b1. Round your answer to three decimal places.
Step 4 of 5: Construct the 98% confidence interval for the slope. Round your answers to three decimal places.(Lower Endpoint, Upper Endpoint)
Step 5 of 5: Construct the 90% confidence interval for the slope. Round your answers to three decimal places.(Lower Endpoint, Upper Endpoint)
Step 1: From the given data
X | Y | X^2 | Y^2 | XY | |
59 | 4.5 | 3481 | 20.25 | 265.5 | |
59 | 3.9 | 3481 | 15.21 | 230.1 | |
59 | 3.4 | 3481 | 11.56 | 200.6 | |
60 | 2.1 | 3600 | 4.41 | 126 | |
61 | 2 | 3721 | 4 | 122 | |
Total: | 298 | 15.9 | 17764 | 55.43 | 944.2 |
and we predict the value y (i.e.y-hat) from the regression equation
X | Y | Ycap/fit | (Y-Ycap)^2 | (Y-Ybar)^2 | (Ycap-Ybar)^2 |
59 | 4.5 | 3.8250 | 0.4556 | 1.7424 | 0.4160 |
59 | 3.9 | 3.8250 | 0.0056 | 0.5184 | 0.4160 |
59 | 3.4 | 3.8250 | 0.1806 | 0.0484 | 0.4160 |
60 | 2.1 | 2.7500 | 0.4225 | 1.1664 | 0.1849 |
61 | 2 | 1.6750 | 0.1056 | 1.3924 | 2.2650 |
298 | 15.9 | 1.1700 | 4.8680 | 3.6980 |
From the above table, SSE = 1.170
Step 2: Se2 = MSE = SSE / n-2 = 1.170 / (5-2) = 0.39