Question

In: Mechanical Engineering

A regenerative gas turbine with intercooling and reheat operates at steady state (Figure Q2). Air enters...

A regenerative gas turbine with intercooling and reheat operates at steady state (Figure Q2). Air enters the compressor at 100 kPa, 27°C with a mass flow rate of 6 kg/s. The pressure ratio across the two-stage compressor is 10. The pressure ratio across the two-stage turbine is also 10. The intercooler and reheater each operate at 300 kPa. At the inlets to the turbine stages, the temperature is 1127°C. The temperature at the inlet to the second compressor stage is 27°C. Assuming the compressors and turbines stages are reversible systems (100% efficiency). The regenerator effectiveness is 70%. Assuming that there is no pressure loss during intercooling, combustion and reheating process, and by using cold air standard assumption, sketch a T-s diagram for this regenerative Brayton-cycle and determine;

i) the thermal efficiency,

ii) the net power developed (kW),

iii) back work ratio.

Solutions

Expert Solution


Related Solutions

Air enters a steady-flow turbine. The conditions of the air entering and leaving the turbine are...
Air enters a steady-flow turbine. The conditions of the air entering and leaving the turbine are as follows: inlet, 300 kPa and 52°C; exit, 100 kPa and 12°C. The mass flow rate is 10 kg/s. Heat transfer from the turbine to the surroundings and the kinetic and potential energy effects are negligible. Calculate the power developed by the turbine. Determine whether the process in the turbine is reversible. If not, determine the isentropic efficiency of the turbine.
Air enters a turbine operating at steady state at 6 bar, 1200 K and expands to...
Air enters a turbine operating at steady state at 6 bar, 1200 K and expands to 0.8 bar. The turbine is well insulated, and kinetic and potential energy effects can be neglected. Assuming ideal gas behavior for the air, what is the maximum theoretical work that could be developed by the turbine in kJ per kg of air flow?
Air enters a turbine operating at steady state at 6 bar, 1600 K and expands to...
Air enters a turbine operating at steady state at 6 bar, 1600 K and expands to 0.8 bar. The turbine is well insulated, and kinetic and potential energy effects can be neglected. Assuming ideal gas behavior for the air, what is the maximum theoretical work that could be developed by the turbine in kJ per kg of air flow?
Air enters a turbine operating at steady state at 10 bar, 1200 K and expands to...
Air enters a turbine operating at steady state at 10 bar, 1200 K and expands to 0.8 bar. The turbine is well insulated, and kinetic and potential energy effects can be neglected. Assuming ideal gas behavior for the air, what is the maximum theoretical work that could be developed by the turbine in kJ per kg of air flow?
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at...
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occurs at an average outer surface temperature of 315 K at the rate of 30 kJ per kg of air flowing. Kinetic and potential energy effects are negligible. Assuming the air is modeled as an ideal gas with variations in specific heat, determine (a) the rate power is developed, in kJ per kg of air...
A reheat Rankine cycle operates with water as the working fluid. Steam enters the first turbine...
A reheat Rankine cycle operates with water as the working fluid. Steam enters the first turbine at 8 MPa and 450◦C and exits at 0.8 MPa. It is then reheated at 400◦C before entering the second turbine, where it exits at 10 kPa. If the amount of work into the pump is 8.04 kJ/kg and the net work per cycle produced is 1410.5 kJ/kg, determine the thermal efficiency. Assume no pressure losses in the condenser or the boiler.
Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat...
Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 6 MPa and 500°C and leaves as saturated vapor. Steam is then reheated to 400°C before it expands to a pressure of 10 kPa. Heat is transferred to the steam in the boiler at a rate of 6*104 kW. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 7°C. Show the...
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6...
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6 MPa at 700 ºC and the condenser at 10 kPa. Turbine has isentropic efficiency of 85% and pumps have isentropic efficiency of 90%. Steam is extracted from the turbine at 0.6 MPa to heat the feedwater in an open feedwater heater. Water leaves the open feedwater heater as saturated liquid. a) Draw the system with labels and show the ideal and the non-ideal cycle...
A steam power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at...
A steam power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at 6 MPa and 450oC and is condensed in the condenser at 20 kPa. Steam is extracted from the turbine at 0.4 MPa to heat the feedwater in an open feedwater heater. Water leaves the feedwater heater as a saturated liquid. Show the cycle on a T-s diagram and determine the fraction of steam extracted from the turbine for the open feedwater heater.
Air as an ideal gas enters a diffuser operating at steady state at 5 bar, 340...
Air as an ideal gas enters a diffuser operating at steady state at 5 bar, 340 K with a velocity of 512 m/s. The exit velocity is 110 m/s. For adiabatic operation with no internal irreversibilities, determine the exit temperature, in K, and the exit pressure, in bar: (a) for k = 1.4. (b) using data from Table A-22.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT