In: Computer Science
C++ finish the AVL Tree code: #include "AVLNode.h" #include "AVLTree.h" #include <iostream> #include <string> using namespace std; AVLTree::AVLTree() { root = NULL; } AVLTree::~AVLTree() { delete root; root = NULL; } // insert finds a position for x in the tree and places it there, rebalancing // as necessary. void AVLTree::insert(const string& x) { // YOUR IMPLEMENTATION GOES HERE } // remove finds x's position in the tree and removes it, rebalancing as // necessary. void AVLTree::remove(const string& x) { root = remove(root, x); } // pathTo finds x in the tree and returns a string representing the path it // took to get there. string AVLTree::pathTo(const string& x) const { // YOUR IMPLEMENTATION GOES HERE } // find determines whether or not x exists in the tree. bool AVLTree::find(const string& x) const { // YOUR IMPLEMENTATION GOES HERE } // numNodes returns the total number of nodes in the tree. int AVLTree::numNodes() const { // YOUR IMPLEMENTATION GOES HERE } // balance makes sure that the subtree with root n maintains the AVL tree // property, namely that the balance factor of n is either -1, 0, or 1. void AVLTree::balance(AVLNode*& n) { // YOUR IMPLEMENTATION GOES HERE } // rotateLeft performs a single rotation on node n with its right child. AVLNode* AVLTree::rotateLeft(AVLNode*& n) { // YOUR IMPLEMENTATION GOES HERE } // rotateRight performs a single rotation on node n with its left child. AVLNode* AVLTree::rotateRight(AVLNode*& n) { // YOUR IMPLEMENTATION GOES HERE } // private helper for remove to allow recursion over different nodes. // Returns an AVLNode* that is assigned to the original node. AVLNode* AVLTree::remove(AVLNode*& n, const string& x) { if (n == NULL) { return NULL; } // first look for x if (x == n->value) { // found if (n->left == NULL && n->right == NULL) { // no children delete n; n = NULL; return NULL; } else if (n->left == NULL) { // Single child (left) AVLNode* temp = n->right; n->right = NULL; delete n; n = NULL; return temp; } else if (n->right == NULL) { // Single child (right) AVLNode* temp = n->left; n->left = NULL; delete n; n = NULL; return temp; } else { // two children -- tree may become unbalanced after deleting n string sr = min(n->right); n->value = sr; n->right = remove(n->right, sr); } } else if (x < n->value) { n->left = remove(n->left, x); } else { n->right = remove(n->right, x); } // Recalculate heights and balance this subtree n->height = 1 + max(height(n->left), height(n->right)); balance(n); return n; } // min finds the string with the smallest value in a subtree. string AVLTree::min(AVLNode* node) const { // go to bottom-left node if (node->left == NULL) { return node->value; } return min(node->left); } // height returns the value of the height field in a node. // If the node is null, it returns -1. int AVLTree::height(AVLNode* node) const { if (node == NULL) { return -1; } return node->height; } // max returns the greater of two integers. int max(int a, int b) { if (a > b) { return a; } return b; } // Helper function to print branches of the binary tree // You do not need to know how this function works. void showTrunks(Trunk* p) { if (p == NULL) return; showTrunks(p->prev); cout << p->str; } // Recursive function to print binary tree // It uses inorder traversal void AVLTree::printTree(AVLNode* root, Trunk* prev, bool isRight) { if (root == NULL) return; string prev_str = " "; Trunk* trunk = new Trunk(prev, prev_str); printTree(root->right, trunk, true); if (!prev) trunk->str = "---"; else if (isRight) { trunk->str = ".---"; prev_str = " |"; } else { trunk->str = "`---"; prev->str = prev_str; } showTrunks(trunk); cout << root->value << endl; if (prev) prev->str = prev_str; trunk->str = " |"; printTree(root->left, trunk, false); delete trunk; } void AVLTree::printTree() { printTree(root, NULL, false); }
#include "AVLNode.h" #include "AVLTree.h" #include <iostream> #include <string> using namespace std; AVLTree::AVLTree() { root = NULL; } AVLTree::~AVLTree() { delete root; root = NULL; } // insert finds a position for x in the tree and places it there, rebalancing // as necessary. void AVLTree::insert(const string & x) { insert(x,root); }
/ remove finds x's position in the tree and removes it, rebalancing as // necessary. void AVLTree::remove(const string & x) { root = remove(root, x); } // pathTo finds x in the tree and returns a string representing the path it // took to get there. string AVLTree::pathTo(const string & x) const { return elementAt(pathTo(root)); }
/ find determines whether or not x exists in the tree. bool AVLTree::find(const string& x) const { Avlnode *t; while(t!= NULL) if(x-> t->element) { t= t->left; } else if(t->element<x) { t= t->right; } else return t; return NULL;
}
// numNodes returns the total number of nodes in the tree. int AVLTree::numNodes() const { int node=0; if(root) { node++; node= node + numNode(root->left); node= node + numNode(root->right); } return node; } // balance makes sure that the subtree with root n maintains the AVL tree // property, namely that the balance factor of n is either -1, 0, or 1. void AVLTree::balance(AVLNode*& n) { if(n== NULL) return 0; else return height(n->left) - height(n->right); } // rotateLeft performs a single rotation on node n with its right child. AVLNode* AVLTree::rotateLeft(AVLNode*& n) { AvlNode *n1= n->left; n->left = n1->right; n1->right = n; n-> height= max (height( n->left), height (n->right))+1; n1-> height= max (height( n1->left), n->height)+ 1; n1= n; } // rotateRight performs a single rotation on node n with its left child. AVLNode* AVLTree::rotateRight(AVLNode*& n) { avlnode *n1 = n->right; n->right= n1->left n1->left= n; n->height= max( height (n->left),height()n->right))+ 1; n1->height= max(height (n1->right),n->height) + 1; n=n1; } // private helper for remove to allow recursion over different nodes. // Returns an AVLNode* that is assigned to the original node. AVLNode* AVLTree::remove(AVLNode*& n, const string& x) { if (n == NULL) { return NULL; } // first look for x if (x == n->value) { // found if (n->left == NULL && n->right == NULL) { // no children delete n; n = NULL; return NULL; } else if (n->left == NULL) { // Single child (left) AVLNode* temp = n->right; n->right = NULL; delete n; n = NULL; return temp; } else if (n->right == NULL) { // Single child (right) AVLNode* temp = n->left; n->left = NULL; delete n; n = NULL; return temp; } else { // two children -- tree may become unbalanced after deleting n string sr = min(n->right); n->value = sr; n->right = remove(n->right, sr); } } else if (x < n->value) { n->left = remove(n->left, x); } else { n->right = remove(n->right, x); } // Recalculate heights and balance this subtree n->height = 1 + max(height(n->left), height(n->right)); balance(n); return n; } // min finds the string with the smallest value in a subtree. string AVLTree::min(AVLNode* node) const { // go to bottom-left node if (node->left == NULL) { return node->value; } return min(node->left); } // height returns the value of the height field in a node. // If the node is null, it returns -1. int AVLTree::height(AVLNode* node) const { if (node == NULL) { return -1; } return node->height; } // max returns the greater of two integers. int max(int a, int b) { if (a > b) { return a; } return b; } // Helper function to print branches of the binary tree // You do not need to know how this function works. void showTrunks(Trunk* p) { if (p == NULL) return; showTrunks(p->prev); cout << p->str; } // Recursive function to print binary tree // It uses inorder traversal void AVLTree::printTree(AVLNode* root, Trunk* prev, bool isRight) { if (root == NULL) return; string prev_str = " "; Trunk* trunk = new Trunk(prev, prev_str); printTree(root->right, trunk, true); if (!prev) trunk->str = "---"; else if (isRight) { trunk->str = ".---"; prev_str = " |"; } else { trunk->str = "`---"; prev->str = prev_str; } showTrunks(trunk); cout << root->value << endl; if (prev) prev->str = prev_str; trunk->str = " |"; printTree(root->left, trunk, false); delete trunk; } void AVLTree::printTree() { printTree(root, NULL, false); }