Question

In: Physics

An RLC series circuit has a 180 ? resistor and a 25.0 mH inductor. At 7600 Hz, the phase angle is 45.0°.

 

An RLC series circuit has a 180 ? resistor and a 25.0 mH inductor. At 7600 Hz, the phase angle is 45.0°.

(a)

What is the impedance (in ohms)? ?

(b)

Find the minimum possible capacitance (in nanofarads) of the circuit.

  nf

(c)

If

Vrms = V

is applied, what is the average power (in watts) supplied?

  W

he lowest frequency in the FM radio band is 87.5 MHz.

(a)

What inductance (in µH) is needed to produce this resonant frequency if it is connected to a 2.45 pF capacitor?

µH

(b)

The capacitor is variable, to allow the resonant frequency to be adjusted to as high as 108 MHz. What must the capacitance be (in pF) at this frequency?

pF

Solutions

Expert Solution

Inductive reactance

XL=2pifL =2pi*7600*(25*10-3)

XL=1193.805 ohms

Power factor

Cos(45)=R/Z

=>Z=180/Cos(45)

Z=254.56 ohms

b)

Since Impedance is

Z=sqrt[R2+(XL-XC)2]

254.56 =sqrt[1802 + (1193.805-XC)2]

XC=1013.805 ohms

SInce XC =1/2pifC

=>C=1/2pi*7600*1013.805

C=20.66 nF

c)

Vrms value is not given

Current

I=V/Z

Average Power

Pav=VICos(o) =VICos45

substitute value and get the Pav Value

--------------------------------------------------------------------------------------

a)

Resonant frequency

f=1/2pisqrt(LC)

=>L=1/4pi2f2C =1/4pi2*(87.5*106)2*(2.45*10-12)

L=1.35 uH

b)

Capacitance is

C=1/4pi2f2L =1/4pi2*(108*106)2*(1.35*10-6)

C=1.6086 pF


Related Solutions

An RLC series circuit has a 1.00 kΩ resistor, a 160 mH inductor, and a 25.0...
An RLC series circuit has a 1.00 kΩ resistor, a 160 mH inductor, and a 25.0 nF capacitor. (a) Find the circuit's impedance (in Ω) at 490 Hz. 12539.57588 Ω (b) Find the circuit's impedance (in Ω) at 7.50 kHz. 6765.310603 Ω (c) If the voltage source has Vrms = 408 V, what is Irms (in mA) at each frequency? mA (at 490 Hz)   mA (at 7.50 kHz) (d) What is the resonant frequency (in kHz) of the circuit? kHz...
An RLC series circuit has a 1.00 kΩ resistor, a 160 mH inductor, and a 25.0...
An RLC series circuit has a 1.00 kΩ resistor, a 160 mH inductor, and a 25.0 nF capacitor. (a) Find the circuit's impedance (in Ω) at 490 Hz. Ω (b) Find the circuit's impedance (in Ω) at 7.50 kHz. Ω (c) If the voltage source has Vrms = 408 V, what is Irms (in mA) at each frequency? mA (at 490 Hz) mA (at 7.50 kHz) (d) What is the resonant frequency (in kHz) of the circuit? kHz (e) What...
A series RLC circuit consists of a 58.0 ? resistor, a 2.50 mH inductor, and a...
A series RLC circuit consists of a 58.0 ? resistor, a 2.50 mH inductor, and a 450 nF capacitor. It is connected to a 3.0 kHz oscillator with a peak voltage of 5.60 V. What is the instantaneous emf E when i = I ? What is the instantaneous emf E when i = 0A and is decreasing? What is the instantaneous emf E when i = - I ?
A series RLC circuit consists of a 56.0 ? resistor, a 3.80 mH inductor, and a...
A series RLC circuit consists of a 56.0 ? resistor, a 3.80 mH inductor, and a 400 nF capacitor. It is connected to a 3.0 kHz oscillator with a peak voltage of 4.10 V. Part A What is the instantaneous emf E when i =I? Express your answer with the appropriate units. 0V SubmitHintsMy AnswersGive UpReview Part Incorrect; Try Again; 5 attempts remaining Part B What is the instantaneous emf E when i =0A and is decreasing? Express your answer...
An RLC series circuit has a 60 Ω resistor, a 3.5 mH inductor, and a 6...
An RLC series circuit has a 60 Ω resistor, a 3.5 mH inductor, and a 6 μF capacitor. Find the circuit’s impedance at 55 Hz and 12 kHz. If the voltage source has Vrms = 110 V, what is Irms at each frequency?    
An RLC series circuit has a 2.50 Ω resistor, a 100 µH inductor, and an 87.5...
An RLC series circuit has a 2.50 Ω resistor, a 100 µH inductor, and an 87.5 µFcapacitor. (a) If the voltage source is Vrms = 5.60 V , what is the Irms at 120 Hz? A ( ± 0.001 A) (b) What is the phase angle of the current vs voltage at this frequency? Enter a positive number between 0 and 90 degrees ( ± 0.1 degrees) (c) What is the Irms at 5.0 kHz? A ( ± 0.01 A)...
An RLC series circuit has a 2.60 Ω resistor, a 200 µH inductor, and an 82.0...
An RLC series circuit has a 2.60 Ω resistor, a 200 µH inductor, and an 82.0 µF capacitor. (a) Find the circuit's impedance (in Ω) at 120 Hz. ________Ω (b) Find the circuit's impedance (in Ω) at 5.00 kHz. ________Ω (c) If the voltage source has Vrms = 5.60 V, what is Irms (in A) at each frequency? Irms, 120 Hz= _______A Irms, 5.00 kHz= _______A (d) What is the resonant frequency (in kHz) of the circuit? ________kHz (e) What...
A series AC circuit contains a resistor, an inductor of 240 mH, a capacitor of 5.40...
A series AC circuit contains a resistor, an inductor of 240 mH, a capacitor of 5.40 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance. _________________Ω (b) Calculate the capacitive reactance. ______________-Ω (c) Calculate the impedance. _______________kΩ (d) Calculate the resistance in the circuit. ______________kΩ (e) Calculate the phase angle between the current and the source voltage. _______________°
An RLC series circuit has a 2.60 ? resistor, a 200 µH inductor, and a 78.0 µF capacitor.
  An RLC series circuit has a 2.60 ? resistor, a 200 µH inductor, and a 78.0 µF capacitor. (a) Find the circuit's impedance (in ?) at 120 Hz. (b) Find the circuit's impedance (in ?) at 5.00 kHz. (c) If the voltage source has Vrms = 5.60 V, what is Irms (in A) at each frequency? Irms, 120 Hz =_____ A Irms, 5.00 kHz =_____A (d) What is the resonant frequency (in kHz) of the circuit? (e) What is...
In the given circuit an inductor of L = 8.95-mH and a resistor of R =...
In the given circuit an inductor of L = 8.95-mH and a resistor of R = 17.9-Ω resistor are connected in series with a dc battery of E = 8.80-V. What is the voltage across the resistor immediately after the switch is closed? What is the voltage across the resistor after the switch has been closed for a long time? What is the current in the inductor after the switch has been closed for a long time?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT