In: Statistics and Probability
| 
 OBSERVATION  | 
|||||
| 
 SAMPLE  | 
 1  | 
 2  | 
 3  | 
 5  | 
|
| 
 1  | 
 1.20  | 
 1.42  | 
 1.05  | 
 1.06  | 
 1.40  | 
| 
 2  | 
 1.81  | 
 1.76  | 
 1.46  | 
 1.23  | 
 1.88  | 
| 
 3  | 
 1.28  | 
 1.17  | 
 1.15  | 
 1.76  | 
 1.92  | 
| 
 4  | 
 1.11  | 
 1.43  | 
 1.41  | 
 1.06  | 
 1.41  | 
| 
 5  | 
 1.79  | 
 1.66  | 
 1.18  | 
 1.21  | 
 1.67  | 
| 
 6  | 
 1.54  | 
 1.34  | 
 1.84  | 
 1.34  | 
 1.49  | 
| 
 7  | 
 1.02  | 
 1.54  | 
 1.47  | 
 1.94  | 
 1.09  | 
| 
 8  | 
 1.20  | 
 1.86  | 
 1.05  | 
 1.64  | 
 1.82  | 
| 
 9  | 
 1.22  | 
 1.52  | 
 1.98  | 
 1.74  | 
 1.83  | 
| 
 10  | 
 1.06  | 
 1.61  | 
 1.06  | 
 1.52  | 
 1.72  | 
| 
 11  | 
 1.06  | 
 2.00  | 
 1.41  | 
 1.59  | 
 1.40  | 
| 
 12  | 
 1.80  | 
 1.85  | 
 1.77  | 
 1.27  | 
 1.08  | 
| 
 13  | 
 1.87  | 
 1.08  | 
 1.70  | 
 1.59  | 
 1.52  | 
| 
 14  | 
 1.21  | 
 1.29  | 
 1.80  | 
 1.15  | 
 1.11  | 
| 
 15  | 
 1.96  | 
 1.58  | 
 1.64  | 
 1.79  | 
 1.92  | 
Use the samples above to construct and determine the upper and lower limits the Bar-X and R-Charts.
Assume that the upper and lower tolerant limits of Pulley Engineering have been set at +/- 0.8 inches. Assess the process capability for Pulley.
A) Form the Correct construction of upper and lower limits for bar-R chart
B) Evaluate process capability using the information provided above.
| 
 Observation  | 
 Sample 1  | 
 Sample 2  | 
 Sample 3  | 
 Sample 4  | 
 Sample 5  | 
 X bar ( X⁻ )  | 
 Range R  | 
| 
 1  | 
 1.2  | 
 1.42  | 
 1.05  | 
 1.06  | 
 1.4  | 
 1.226  | 
 0.37  | 
| 
 2  | 
 1.81  | 
 1.76  | 
 1.46  | 
 1.23  | 
 1.88  | 
 1.628  | 
 0.65  | 
| 
 3  | 
 1.28  | 
 1.17  | 
 1.15  | 
 1.76  | 
 1.92  | 
 1.456  | 
 0.77  | 
| 
 4  | 
 1.11  | 
 1.43  | 
 1.41  | 
 1.06  | 
 1.41  | 
 1.284  | 
 0.37  | 
| 
 5  | 
 1.79  | 
 1.66  | 
 1.18  | 
 1.21  | 
 1.67  | 
 1.502  | 
 0.61  | 
| 
 6  | 
 1.54  | 
 1.34  | 
 1.84  | 
 1.34  | 
 1.49  | 
 1.51  | 
 0.5  | 
| 
 7  | 
 1.02  | 
 1.54  | 
 1.47  | 
 1.94  | 
 1.09  | 
 1.412  | 
 0.92  | 
| 
 8  | 
 1.2  | 
 1.86  | 
 1.05  | 
 1.64  | 
 1.82  | 
 1.514  | 
 0.81  | 
| 
 9  | 
 1.22  | 
 1.52  | 
 1.98  | 
 1.74  | 
 1.83  | 
 1.658  | 
 0.61  | 
| 
 10  | 
 1.06  | 
 1.61  | 
 1.06  | 
 1.52  | 
 1.72  | 
 1.394  | 
 0.66  | 
| 
 11  | 
 1.06  | 
 2  | 
 1.41  | 
 1.59  | 
 1.4  | 
 1.492  | 
 0.94  | 
| 
 12  | 
 1.8  | 
 1.85  | 
 1.77  | 
 1.27  | 
 1.08  | 
 1.554  | 
 0.77  | 
| 
 13  | 
 1.87  | 
 1.08  | 
 1.7  | 
 1.59  | 
 1.52  | 
 1.552  | 
 0.79  | 
| 
 14  | 
 1.21  | 
 1.29  | 
 1.8  | 
 1.15  | 
 1.11  | 
 1.312  | 
 0.69  | 
| 
 15  | 
 1.96  | 
 1.58  | 
 1.64  | 
 1.79  | 
 1.92  | 
 1.778  | 
 0.32  | 
| 
 ∑ X⁻ = 22.272  | 
 ∑ R = 9.78  | 
∑ X⁻ = 22.272 , ∑ R = 9.78
Grand mean = ∑ X⁻ / n
= 22.272 / 15
= 1.48
Range Mean R¯ = ∑ R / n
= 9.78 / 15
= 0.65
Control limits for Mean charts:
UCLx¯ = Grand mean + R¯ A2
= 1.48 + (0.65) ( 0.577)
= 1.85
Central Line CLx¯ = Grand mean = 1.48
LCLx¯ = Grand mean - R¯ A2
= 1.48 - (0.65) ( 0.577)
= 1.10
Control Limits for Range charts:
UCLR¯ = D4R¯
= 2.114 (0.65)
= 1.37
Central Line = R¯ = 0.65
LCLR¯ = D3R¯
= 0


Observation: No sample point is above UCL and below LCL .
Conclusion: The process is under control.