In: Statistics and Probability
OBSERVATION |
|||||
SAMPLE |
1 |
2 |
3 |
5 |
|
1 |
1.20 |
1.42 |
1.05 |
1.06 |
1.40 |
2 |
1.81 |
1.76 |
1.46 |
1.23 |
1.88 |
3 |
1.28 |
1.17 |
1.15 |
1.76 |
1.92 |
4 |
1.11 |
1.43 |
1.41 |
1.06 |
1.41 |
5 |
1.79 |
1.66 |
1.18 |
1.21 |
1.67 |
6 |
1.54 |
1.34 |
1.84 |
1.34 |
1.49 |
7 |
1.02 |
1.54 |
1.47 |
1.94 |
1.09 |
8 |
1.20 |
1.86 |
1.05 |
1.64 |
1.82 |
9 |
1.22 |
1.52 |
1.98 |
1.74 |
1.83 |
10 |
1.06 |
1.61 |
1.06 |
1.52 |
1.72 |
11 |
1.06 |
2.00 |
1.41 |
1.59 |
1.40 |
12 |
1.80 |
1.85 |
1.77 |
1.27 |
1.08 |
13 |
1.87 |
1.08 |
1.70 |
1.59 |
1.52 |
14 |
1.21 |
1.29 |
1.80 |
1.15 |
1.11 |
15 |
1.96 |
1.58 |
1.64 |
1.79 |
1.92 |
Use the samples above to construct and determine the upper and lower limits the Bar-X and R-Charts.
Assume that the upper and lower tolerant limits of Pulley Engineering have been set at +/- 0.8 inches. Assess the process capability for Pulley.
A) Form the Correct construction of upper and lower limits for bar-R chart
B) Evaluate process capability using the information provided above.
Observation |
Sample 1 |
Sample 2 |
Sample 3 |
Sample 4 |
Sample 5 |
X bar ( X⁻ ) |
Range R |
1 |
1.2 |
1.42 |
1.05 |
1.06 |
1.4 |
1.226 |
0.37 |
2 |
1.81 |
1.76 |
1.46 |
1.23 |
1.88 |
1.628 |
0.65 |
3 |
1.28 |
1.17 |
1.15 |
1.76 |
1.92 |
1.456 |
0.77 |
4 |
1.11 |
1.43 |
1.41 |
1.06 |
1.41 |
1.284 |
0.37 |
5 |
1.79 |
1.66 |
1.18 |
1.21 |
1.67 |
1.502 |
0.61 |
6 |
1.54 |
1.34 |
1.84 |
1.34 |
1.49 |
1.51 |
0.5 |
7 |
1.02 |
1.54 |
1.47 |
1.94 |
1.09 |
1.412 |
0.92 |
8 |
1.2 |
1.86 |
1.05 |
1.64 |
1.82 |
1.514 |
0.81 |
9 |
1.22 |
1.52 |
1.98 |
1.74 |
1.83 |
1.658 |
0.61 |
10 |
1.06 |
1.61 |
1.06 |
1.52 |
1.72 |
1.394 |
0.66 |
11 |
1.06 |
2 |
1.41 |
1.59 |
1.4 |
1.492 |
0.94 |
12 |
1.8 |
1.85 |
1.77 |
1.27 |
1.08 |
1.554 |
0.77 |
13 |
1.87 |
1.08 |
1.7 |
1.59 |
1.52 |
1.552 |
0.79 |
14 |
1.21 |
1.29 |
1.8 |
1.15 |
1.11 |
1.312 |
0.69 |
15 |
1.96 |
1.58 |
1.64 |
1.79 |
1.92 |
1.778 |
0.32 |
∑ X⁻ = 22.272 |
∑ R = 9.78 |
∑ X⁻ = 22.272 , ∑ R = 9.78
Grand mean = ∑ X⁻ / n
= 22.272 / 15
= 1.48
Range Mean R¯ = ∑ R / n
= 9.78 / 15
= 0.65
Control limits for Mean charts:
UCLx¯ = Grand mean + R¯ A2
= 1.48 + (0.65) ( 0.577)
= 1.85
Central Line CLx¯ = Grand mean = 1.48
LCLx¯ = Grand mean - R¯ A2
= 1.48 - (0.65) ( 0.577)
= 1.10
Control Limits for Range charts:
UCLR¯ = D4R¯
= 2.114 (0.65)
= 1.37
Central Line = R¯ = 0.65
LCLR¯ = D3R¯
= 0
Observation: No sample point is above UCL and below LCL .
Conclusion: The process is under control.