In: Statistics and Probability
Consider the following time series.
t | 1 | 2 | 3 | 4 | 5 |
yt | 5 | 10 | 10 | 15 | 14 |
(a) | Choose the correct time series plot. | ||||||||
|
|||||||||
- Select your answer -Plot (i)Plot (ii)Plot (iii)Plot (iv)Item 1 | |||||||||
What type of pattern exists in the data? | |||||||||
- Select your answer -Positive trend patternHorizontal stationary patternVertical stationary patternNegative trend patternItem 2 | |||||||||
(b) | Use simple linear regression analysis to find the parameters for the line that minimizes MSE for this time series. | ||||||||
If required, round your answers to two decimal places. | |||||||||
y-intercept, b0 = | |||||||||
Slope, b1 = | |||||||||
MSE = | |||||||||
(c) | What is the forecast for t = 6? | ||||||||
If required, round your answer to one decimal place. |
a) Time series plot:
Type of pattern : Positive trend pattern
b)
X | Y | XY | X² | Y² |
1 | 5 | 5 | 1 | 25 |
2 | 10 | 20 | 4 | 100 |
3 | 10 | 30 | 9 | 100 |
4 | 15 | 60 | 16 | 225 |
5 | 14 | 70 | 25 | 196 |
Ʃx = | Ʃy = | Ʃxy = | Ʃx² = | Ʃy² = |
15 | 54 | 185 | 55 | 646 |
Sample size, n = | 5 |
x̅ = Ʃx/n = 15/5 = | 3 |
y̅ = Ʃy/n = 54/5 = | 10.8 |
SSxx = Ʃx² - (Ʃx)²/n = 55 - (15)²/5 = | 10 |
SSyy = Ʃy² - (Ʃy)²/n = 646 - (54)²/5 = | 62.8 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 185 - (15)(54)/5 = | 23 |
Slope, b1 = SSxy/SSxx = 23/10 = 2.3
y-intercept, b0 = y̅ -b1* x̅ = 10.8 - (2.3)*3 = 3.9
Regression equation :
ŷ = 3.9 + (2.3) x
SSE = SSyy -SSxy²/SSxx = 62.8 - (23)²/10 = 9.9
MSE = SSE/(n-2) = 3.3
c)
Predicted value of y at x = 6
ŷ = 3.9 + (2.3) * 6 = 17.7