Question

In: Statistics and Probability

Let x = age in years of a rural Quebec woman at the time of her...

Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 51 women in rural Quebec gave a sample variance s2 = 3.2. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence interval for the population variance.

(a) What is the level of significance?


State the null and alternate hypotheses.

Ho: σ2 = 5.1; H1: σ2 > 5.1Ho: σ2 < 5.1; H1: σ2 = 5.1     Ho: σ2 = 5.1; H1: σ2 < 5.1Ho: σ2 = 5.1; H1: σ2 ≠ 5.1


(b) Find the value of the chi-square statistic for the sample. (Round your answer to two decimal places.)


What are the degrees of freedom?


What assumptions are you making about the original distribution?

We assume a uniform population distribution.We assume a normal population distribution.     We assume a binomial population distribution.We assume a exponential population distribution.


(c) Find or estimate the P-value of the sample test statistic.

P-value > 0.1000.050 < P-value < 0.100     0.025 < P-value < 0.0500.010 < P-value < 0.0250.005 < P-value < 0.010P-value < 0.005


(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?

Since the P-value > α, we fail to reject the null hypothesis.Since the P-value > α, we reject the null hypothesis.     Since the P-value ≤ α, we reject the null hypothesis.Since the P-value ≤ α, we fail to reject the null hypothesis.


(e) Interpret your conclusion in the context of the application.

At the 5% level of significance, there is insufficient evidence to conclude that the variance of age at first marriage is less than 5.1.At the 5% level of significance, there is sufficient evidence to conclude that the that the variance of age at first marriage is less than 5.1.     


(f) Find the requested confidence interval for the population variance. (Round your answers to two decimal places.)

lower limit
upper limit    


Interpret the results in the context of the application.

We are 90% confident that σ2 lies within this interval.We are 90% confident that σ2 lies above this interval.     We are 90% confident that σ2 lies outside this interval.We are 90% confident that σ2 lies below this interval.

Solutions

Expert Solution


The statistic software output for this problem is :

One sample variance summary hypothesis test:
σ2 : Variance of population
H0 : σ2 = 5.1
HA : σ2 < 5.1

Hypothesis test results:

Variance Sample Var. DF Chi-square Stat P-value
σ2 3.2 50 31.372549 0.0181

(a)

the level of significance = 0.05

Ho: σ2 = 5.1; H1: σ2 < 5.1

(b)

the chi-square statistic

Degrees of freedom = 50

We assume a normal population distribution.

(c)

0.005 < P-value < 0.010

(d)

Since the P-value ≤ α, we reject the null hypothesis.

(e)

At the 5% level of significance, there is sufficient evidence to conclude that the that the

variance of age at first marriage is less than 5.1.     

(f)

Lower limit = 2.37

Upper limit = 4.60

We are 90% confident that σ2 lies within this interval.


Related Solutions

Let x = age in years of a rural Quebec woman at the time of her...
Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 51 women in rural Quebec gave a sample variance s2 = 2.8. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence...
Let x = age in years of a rural Quebec woman at the time of her...
Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 41 women in rural Quebec gave a sample variance s2 = 2.4. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence...
Let x = age in years of a rural Quebec woman at the time of her...
Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 41 women in rural Quebec gave a sample variance s2 = 2.8. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence...
Let x = age in years of a rural Quebec woman at the time of her...
Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 41 women in rural Quebec gave a sample variance s2 = 2.3. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence...
Let x = age in years of a rural Quebec woman at the time of her...
Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 41 women in rural Quebec gave a sample variance s2 = 2.7. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence...
Let x = age in years of a rural Quebec woman at the time of her...
Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 51 women in rural Quebec gave a sample variance s2 = 2.9. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence...
Let x = age in years of a rural Quebec woman at the time of her...
Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 51 women in rural Quebec gave a sample variance s2 = 2.5. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence...
Let x = age in years of a rural Quebec woman at the time of her...
Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 31 women in rural Quebec gave a sample variance s2 = 2.9. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence...
Let x = age in years of a rural Quebec woman at the time of her...
Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 51 women in rural Quebec gave a sample variance s2 = 3.1. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence...
Let x = age in years of a rural Quebec woman at the time of her...
Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 51 women in rural Quebec gave a sample variance s2 = 2.3. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT