Question

In: Computer Science

Prove that The OR operation is closed for all x, y ∈ B x + y ∈ B

Boolean Algebra

Prove that The OR operation is closed for all x, y ∈ B x + y ∈ B

and

Prove that The And operation is closed for all x, y ∈ B x . y ∈ B

Solutions

Expert Solution

A mathematical structure O is said to be closed under an operation +

if there are a,b belongs to O then a + b also belongs to O.

Q 1: Prove that The OR operation is closed for all x, y ∈ B x + y ∈ B

Proof: Let x and y belongs to Binary set B ={0,1}

if we add x and y we have four cases

0+0=0

0+1=1

1+0=1

1+1=1

so the addition of x+y also yields 0 or 1 that belongs to B

Hence x+y is closed under B.

Q 2: Prove that The OR operation is closed for all x, y ∈ B x . y ∈ B

Proof: Let x and y belongs to Binary set B ={0,1}

if we multiply x and y we have four cases

0.0=0

0.1=0

1.0=0

1.1=1

so the multiplication of x and y also yields 0 or 1 that belongs to B

Hence x.y is closed under B.


Related Solutions

2. Prove the following properties. (b) Prove that x + ¯ xy = x + y.
2. Prove the following properties.(b) Prove that x + ¯ xy = x + y.3. Consider the following Boolean function: F = x¯ y + xy¯ z + xyz(a) Draw a circuit diagram to obtain the output F. (b) Use the Boolean algebra theorems to simplify the output function F into the minimum number of input literals.
Let x, y ∈ R. Prove the following: (a) 0 < 1 (b) For all n...
Let x, y ∈ R. Prove the following: (a) 0 < 1 (b) For all n ∈ N, if 0 < x < y, then x^n < y^n. (c) |x · y| = |x| · |y|
y=a+bx b <0 prove that x and y are perfectly negatively correlated
y=a+bx b <0 prove that x and y are perfectly negatively correlated
a. Prove that y=sin(x) is a subspace of R^2 b. Prove that a set of 2x2...
a. Prove that y=sin(x) is a subspace of R^2 b. Prove that a set of 2x2 non invertible matrices a subspace of all 2x2 matrices
Assume that an operation * is defined as follows: x * y = x' + y...
Assume that an operation * is defined as follows: x * y = x' + y Using Boolean algebra theorems and postulates (don’t use K-maps), check whether the operation * is associative or not?
Differential Geometry Open & Closed Sets, Continuity Prove f(t)=(x(t),y(t)) is continuous iff x(t) and y(t) are...
Differential Geometry Open & Closed Sets, Continuity Prove f(t)=(x(t),y(t)) is continuous iff x(t) and y(t) are continuous
. Let x, y ∈ R \ {0}. Prove that if x < x^(−1) < y...
. Let x, y ∈ R \ {0}. Prove that if x < x^(−1) < y < y^(−1) then x < −1.
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove...
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove f(A1∩A2)⊂f(A1)∩f(A2). Give an example in which equality fails. (C) Prove f−1(B1∪B2)=f−1(B1)∪f−1(B2), where f−1(B)={x∈X: f(x)∈B}. (D) Prove f−1(B1∩B2)=f−1(B1)∩f−1(B2). (E) Prove f−1(Y∖B1)=X∖f−1(B1). (Abstract Algebra)
Given f(x,y) = 2 ; 0< x ≤ y < 1 a. Prove that f(x,y) is...
Given f(x,y) = 2 ; 0< x ≤ y < 1 a. Prove that f(x,y) is a joint pdf. b. Find the correlation coefficient of X and Y.
Let A be a subset of all Real Numbers. Prove that A is closed and bounded...
Let A be a subset of all Real Numbers. Prove that A is closed and bounded (I.e. compact) if and only if every sequence of numbers from A has a subsequence that converges to a point in A. Given it is an if and only if I know we need to do a forward and backwards proof. For the backwards proof I was thinking of approaching it via contrapositive, but I am having a hard time writing the proof in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT