In: Statistics and Probability
The reading speed of second grade students in a large city is approximately normal, with a mean of 90
words per minute (wpm) and a standard deviation of 10 wpm. Complete parts (a) through (e).
(a) What is the probability a randomly selected student in the city will read more than 94 words per minute? (Round to four decimal places as needed.)
(b) What is the probability that a random sample of 12 second grade students from the city results in a mean reading rate of more than 94 words per minute? (Round to four decimal places as needed.)
(c) What is the probability that a random sample of 24 second grade students from the city results in a mean reading rate of more than 94 words per minute? (Round to four decimal places as needed.)
(d) What effect does increasing the sample size have on the probability? Provide an explanation for this result.
(e) A teacher instituted a new reading program at school. After 10 weeks in the program, it was found that the mean reading speed of a random sample of 19 second grade students was 92.3 wpm. What might you conclude based on this result?