In: Statistics and Probability
Find the complete optimal solution to this linear programming problem. | |||||
Min | 5x + 6y | ||||
s.t. | 3x + y >= 15 | ||||
x + 2y >= 12 | |||||
3x + 2y >= 24 | |||||
x , y >= 0 | |||||
Find the complete optimal solution to this linear programming problem. | |||||
Min | 5x + 6y | ||||
s.t. | 3x + y >= 15 | ||||
x + 2y >= 12 | |||||
3x + 2y >= 24 | |||||
x , y >= 0 | |||||
let x1=x , x2=y
Find solution
using Simplex method (BigM method)
MIN Z = 5x1 +
6x2
subject to
3x1 + x2 >=
15
x1 + 2x2 >=
12
3x1 + 2x2 >=
24
and x1,x2 >=
0
Solution:
Problem
is
|
||||||||||||||||||||||||
subject to | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
and x1,x2≥0; |
The problem
is converted to canonical form by adding slack, surplus and
artificial variables as appropiate
1. As the
constraint-1 is of type '≥' we should subtract
surplus variable S1 and add artificial
variable A1
2. As the
constraint-2 is of type '≥' we should subtract
surplus variable S2 and add artificial
variable A2
3. As the
constraint-3 is of type '≥' we should subtract
surplus variable S3 and add artificial
variable A3
After introducing
surplus,artificial variables
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
subject to | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
and x1,x2,S1,S2,S3,A1,A2,A3≥0 |
Iteration-1 | Cj | 5 | 6 | 0 | 0 | 0 | M | M | M | ||
B | CB | XB | x1 | x2 | S1 | S2 | S3 | A1 | A2 | A3 | MinRatio XB/x1 |
A1 | M | 15 | (3) | 1 | -1 | 0 | 0 | 1 | 0 | 0 | 15/3=5→ |
A2 | M | 12 | 1 | 2 | 0 | -1 | 0 | 0 | 1 | 0 | 12/1=12 |
A3 | M | 24 | 3 | 2 | 0 | 0 | -1 | 0 | 0 | 1 | 24/3=8 |
Z=51M | Zj | 7M | 5M | -M | -M | -M | M | M | M | ||
Zj-Cj | 7M-5↑ | 5M-6 | -M | -M | -M | 0 | 0 | 0 |
Positive
maximum Zj-Cj is 7M-5 and its column index
is 1. So,
the entering variable is
x1.
Minimum
ratio is 5 and its row index
is 1. So,
the leaving basis variable is
A1.
∴
The pivot
element is 3.
Entering
=x1, Departing
=A1, Key Element
=3
R1(new)=R1(old)÷3
R2(new)=R2(old) - R1(new)
R3(new)=R3(old) - 3R1(new)
Iteration-2 | Cj | 5 | 6 | 0 | 0 | 0 | M | M | ||
B | CB | XB | x1 | x2 | S1 | S2 | S3 | A2 | A3 | MinRatio XB/x2 |
x1 | 5 | 5 | 1 | 0.3333 | -0.3333 | 0 | 0 | 0 | 0 | 5/0.3333=15 |
A2 | M | 7 | 0 | (1.6667) | 0.3333 | -1 | 0 | 1 | 0 | 7/1.6667=4.2→ |
A3 | M | 9 | 0 | 1 | 1 | 0 | -1 | 0 | 1 | 9/1=9 |
Z=16M+25 | Zj | 5 | 2.6667M+1.6667 | 1.3333M-1.6667 | -M | -M | M | M | ||
Zj-Cj | 0 | 2.6667M-4.3333↑ | 1.3333M-1.6667 | -M | -M | 0 | 0 |
Positive
maximum Zj-Cj is 2.6667M-4.3333 and its column index
is 2. So,
the entering variable is
x2.
Minimum
ratio is 4.2 and its row index
is 2. So,
the leaving basis variable is
A2.
∴
The pivot
element is 1.6667.
Entering
=x2, Departing
=A2, Key Element
=1.6667
R2(new)=R2(old)÷1.6667
R1(new)=R1(old) - 0.3333R2(new)
R3(new)=R3(old) - R2(new)
Iteration-3 | Cj | 5 | 6 | 0 | 0 | 0 | M | ||
B | CB | XB | x1 | x2 | S1 | S2 | S3 | A3 | MinRatio XB/S1 |
x1 | 5 | 3.6 | 1 | 0 | -0.4 | 0.2 | 0 | 0 | --- |
x2 | 6 | 4.2 | 0 | 1 | 0.2 | -0.6 | 0 | 0 | 4.2/0.2=21 |
A3 | M | 4.8 | 0 | 0 | (0.8) | 0.6 | -1 | 1 | 4.8/0.8=6→ |
Z=4.8M+43.2 | Zj | 5 | 6 | 0.8M-0.8 | 0.6M-2.6 | -M | M | ||
Zj-Cj | 0 | 0 | 0.8M-0.8↑ | 0.6M-2.6 | -M | 0 |
Positive
maximum Zj-Cj is 0.8M-0.8 and its column index
is 3. So,
the entering variable is
S1.
Minimum
ratio is 6 and its row index
is 3. So,
the leaving basis variable is
A3.
∴
The pivot
element is 0.8.
Entering
=S1, Departing
=A3, Key Element
=0.8
R3(new)=R3(old)÷0.8
R1(new)=R1(old) + 0.4R3(new)
R2(new)=R2(old) - 0.2R3(new)
Iteration-4 | Cj | 5 | 6 | 0 | 0 | 0 | ||
B | CB | XB | x1 | x2 | S1 | S2 | S3 | MinRatio |
x1 | 5 | 6 | 1 | 0 | 0 | 0.5 | -0.5 | |
x2 | 6 | 3 | 0 | 1 | 0 | -0.75 | 0.25 | |
S1 | 0 | 6 | 0 | 0 | 1 | 0.75 | -1.25 | |
Z=48 | Zj | 5 | 6 | 0 | -2 | -1 | ||
Zj-Cj | 0 | 0 | 0 | -2 | -1 |
Since
all Zj-Cj≤0
Hence, optimal solution
is arrived with value of variables as :
x1=6,x2=3
Min
Z=48
ANSWER: x=6 ,y=3 min z=5*6+6*3=48