Question

In: Math

A m*n matrix A. P is the dimension of null space of A. What are the...

A m*n matrix A. P is the dimension of null space of A. What are the number of solutions to Ax=b in these cases. Prove your answer.

a. m=6, n=8, p=2

b. m=6, n=10, p=5

c. m=8, n=6, p=0

Solutions

Expert Solution


Related Solutions

Describe various spaces associated with an m × n matrix A, such as null space, row...
Describe various spaces associated with an m × n matrix A, such as null space, row space. column space and eigenspace. What are the relationships among them? How does the concept of a linear transformation and its properties relate to matrices and those spaces of the matrices?
Let A be an m × n matrix and B be an m × p matrix....
Let A be an m × n matrix and B be an m × p matrix. Let C =[A | B] be an m×(n + p) matrix. (a) Show that R(C) = R(A) + R(B), where R(·) denotes the range of a matrix. (b) Show that rank(C) = rank(A) + rank(B)−dim(R(A)∩R(B)).
1. For an m x n matrix A, the Column Space of A is a subspace...
1. For an m x n matrix A, the Column Space of A is a subspace of what vector space? 2. For an m x n matrix A, the Null Space of A is a subspace of what vector space?
Suppose C is a m × n matrix and A is a n × m matrix....
Suppose C is a m × n matrix and A is a n × m matrix. Assume CA = Im (Im is the m × m identity matrix). Consider the n × m system Ax = b. 1. Show that if this system is consistent then the solution is unique. 2. If C = [0 ?5 1 3 0 ?1] and A = [2 ?3   1 ?2    6 10] ,, find x (if it exists) when (a) b =[1...
2. Using matrices, create an algorithm that takes a matrix of dimension N x N and...
2. Using matrices, create an algorithm that takes a matrix of dimension N x N and feed it in a spiral shape with the sequential number from 1 to N^2. Then do an algorithm in PSEint
In an attempt to explain what an elder matrix is: it is a n by m...
In an attempt to explain what an elder matrix is: it is a n by m matrix in which each row and each column is sorted in ascending order. Inputs in the matrix can either be finite integers or ∞. the ∞symbol is used when accounting for nonexistent inputs. for all questions below please answer using pseudocode and explainations (a) create an algorithm EXTRACT-MIN on an Elder Matrix that is not empty. the algorithm must run in O(m+n) time. The...
Prove via induction the following properties of Pascal’s Triangle: •P(n,2)=(n(n-1))/2 • P(n+m+1,n) = P(n+m,n)+P(n+m−1,n−1)+P(n+m−2,n−2)+···+P(m,0) for all...
Prove via induction the following properties of Pascal’s Triangle: •P(n,2)=(n(n-1))/2 • P(n+m+1,n) = P(n+m,n)+P(n+m−1,n−1)+P(n+m−2,n−2)+···+P(m,0) for all m ≥ 0
Let A be a diagonalizable n × n matrix and let P be an invertible n...
Let A be a diagonalizable n × n matrix and let P be an invertible n × n matrix such that B = P−1AP is the diagonal form of A. Prove that Ak = PBkP−1, where k is a positive integer. Use the result above to find the indicated power of A. A = 6 0 −4 7 −1 −4 6 0 −4 , A5 A5 =
Let A be a diagonalizable n × n matrix and let P be an invertible n...
Let A be a diagonalizable n × n matrix and let P be an invertible n × n matrix such that B = P−1AP is the diagonal form of A. Prove that Ak = PBkP−1, where k is a positive integer. Use the result above to find A5 A = 4 0 −4 5 −1 −4 6 0 −6
5. Find a matrix A of rank 2 whose nullspace N(A) has dimension 3 and whose...
5. Find a matrix A of rank 2 whose nullspace N(A) has dimension 3 and whose transposed nullspace N(AT) has dimension 2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT