Question

In: Statistics and Probability

\\\textup{Let}\, X_{1}, X_{2}, ..., X_{n}\, \, \textup{be iid exponential random variables with mean}\,\, \beta.\, \textup{Find the...

\\\textup{Let}\, X_{1}, X_{2}, ..., X_{n}\, \, \textup{be iid exponential random variables with mean}\,\, \beta.\, \textup{Find the following for}\, \beta .
\\\\\textup{a. The method of moments estimator}
\\\textup{b. The maximum likelihood estimator}
\\\textup{c. Determine whether the maximum likelihood is unbiased}
\\\textup{d. Find the mean squared error of the maximum likelihood}
\\\textup{e. Find the Cramer-Rao lower bound for the variances of the unbiased estimators}
\\\textup{f. What is the UMVUE (uniformly minimum variance unbiased estimator)? State the reasoning.}
\\\textup{g. Find the asymptotic distribution of the maximum likelihood as}\, n\rightarrow \infty
\\\\\textup{Useful information}
\\X\sim Exponential(\beta) : \frac{1}{\beta }e^{\frac{-x}{b}}
\\E[X]=\beta \; \; \;\; \; \; \; \; Var[X]=\beta ^2

Solutions

Expert Solution


Related Solutions

Let ?1, ?2,…. . , ?? (n random variables iid) as a variable whose pdf is...
Let ?1, ?2,…. . , ?? (n random variables iid) as a variable whose pdf is continuous and uniform over the interval [? - 1; ? + 3]. (1) Determine the estimator of the moments method. (2) Is this estimator unbiased? What is its variance? (3) Find the maximum likelihood estimator (VME) for this setting. Is it unique?
Let X; be n IID U(0, 1) random variables. What are the mean and variance of...
Let X; be n IID U(0, 1) random variables. What are the mean and variance of the minimum-order and maximum-order statistics? PLEASE SHOW ALL WORK AND FORMULAS USED
Let X1, X2, . . . , Xn be iid Poisson random variables with unknown mean...
Let X1, X2, . . . , Xn be iid Poisson random variables with unknown mean µ 1. Find the maximum likelihood estimator of µ 2.Determine whether the maximum likelihood estimator is unbiased for µ
X and Y are independent Exponential random variables with mean=4, λ = 1/2. 1) Find the...
X and Y are independent Exponential random variables with mean=4, λ = 1/2. 1) Find the joint CDF of the random variables X, Y and  Find the probability that 4X > Y . 2) Find the expected value of X^3 + X*Y .
Let X1,…, Xn be a sample of iid random variables with pdf f (x; ?1, ?2)...
Let X1,…, Xn be a sample of iid random variables with pdf f (x; ?1, ?2) = ?1 e^(−?1(x−?2)) with S = [?2, ∞) and Θ = ℝ+ × ℝ. Determine a) L(?1, ?2). b) the MLE of ?⃗ = (?1, ?2). c) E(? ̂ 2).
Let X1,…, Xn be a sample of iid N(0, ?) random variables with Θ=(0, ∞). Determine...
Let X1,…, Xn be a sample of iid N(0, ?) random variables with Θ=(0, ∞). Determine a) the MLE ? of ?. b) E(? ̂). c) the asymptotic variance of the MLE of ?. d) the MLE of SD(Xi ) = √ ?.
Let X and Y be independent Exponential random variables with common mean 1. Their joint pdf...
Let X and Y be independent Exponential random variables with common mean 1. Their joint pdf is f(x,y) = exp (-x-y) for x > 0 and y > 0 , f(x, y ) = 0 otherwise. (See "Independence" on page 349) Let U = min(X, Y) and V = max (X, Y). The joint pdf of U and V is f(u, v) = 2 exp (-u-v) for 0 < u < v < infinity, f(u, v ) = 0 otherwise....
Let X1,…, Xn be a sample of iid Exp(?1, ?2) random variables with common pdf f...
Let X1,…, Xn be a sample of iid Exp(?1, ?2) random variables with common pdf f (x; ?1, ?2) = 1/ ?1 e^ −( x−?2)/ ?1 for x > ?2 and Θ = ℝ × ℝ+. a) Show that S = (X(1), ∑n i=1 Xi ) is jointly sufficient for (?1, ?2). b) Determine the pdf of X(1). c) Determine E[X(1)]. d) Determine E[X^2 (1) ]. e) Determine Var[X(1)]. f ) Is X(1) an MSE-consistent estimator of ?2? g) Given...
Let X1, . . . , Xn ∼ iid Beta(θ, 1). (a) Find the UMP test...
Let X1, . . . , Xn ∼ iid Beta(θ, 1). (a) Find the UMP test for H0 : θ ≥ θ0 vs H1 : θ < θ0. (b) Find the corresponding Wald test. (c) How do these tests compare and which would you prefer?
Let U, V be iid Unif(0, 1) random variables, and set M = max(U,V) and N...
Let U, V be iid Unif(0, 1) random variables, and set M = max(U,V) and N = min (U,V) (a) Find the conditional density of N given M = a for any value of a ∈ (0, 1). (b) Find Cov(M, N).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT