In: Statistics and Probability
What IQ scores put a person in… (a) the top 1%? (b) the top 53% (c) the bottom 67%? (d) the bottom 34%? mean 100 and standard deviation of 16
Solution:-
Given that,
mean = = 100
standard deviation = = 16
a) Using standard normal table,
P(Z > z) = 1%
= 1 - P(Z < z) = 0.01
= P(Z < z) = 1 - 0.01
= P(Z < z ) = 0.99
= P(Z < 2.33 ) = 0.99
z = 2.33
Using z-score formula,
x = z * +
x = 2.33 * 16 + 100
x = 137.28
b) Using standard normal table,
P(Z > z) = 53%
= 1 - P(Z < z) = 0.53
= P(Z < z) = 1 - 0.53
= P(Z < z ) = 0.47
= P(Z < -0.08 ) = 0.47
z = -0.08
Using z-score formula,
x = z * +
x = -0.08 * 16 + 100
x = 98.72
c) Using standard normal table,
P(Z < z) = 67%
= P(Z < z ) = 0.67
= P(Z < 0.44 ) = 0.67
z = 0.44
Using z-score formula,
x = z * +
x = 0.44 * 16 + 100
x = 107.04
d) Using standard normal table,
P(Z < z) = 34%
= P(Z < z ) = 0.34
= P(Z < -0.41) = 0.34
z = -0.41
Using z-score formula,
x = z * +
x = -0.41 * 16 + 100
x = 93.44