In: Chemistry
The following data was collected in a laboratory experiment conducted at 305.2 K.
A.) Determine the complete rate law for this simple chemical process A → B
Time | Concentration |
0 | 4.804 |
0.5 | 3.26799191 |
1 | 2.279801588 |
1.5 | 1.573137404 |
2 | 1.047454686 |
2.5 | 0.713650161 |
3 | 0.52422989 |
3.5 | 0.366551798 |
4 | 0.218181335 |
4.5 | 0.183699478 |
5 | 0.132508896 |
5.5 | 0.097326158 |
6 | 0.033145439 |
6.5 | 0.036526291 |
7 | 0.005104128 |
7.5 | 0.017253798 |
8 | 0.01185835 |
8.5 | 0.008150117 |
9 | 0.025601488 |
9.5 | 0.016150157 |
10 | 0.002645956 |
10.5 | 0.018181463 |
11 | 0.018750139 |
11.5 | 0.020859016 |
12 | 0.020590393 |
12.5 | 0.01959423 |
13 | 0.019721118 |
13.5 | 0.000191672 |
14 | 0.000131734 |
14.5 | 0.01990946 |
15 | 0.019937773 |
B.) For the set of kinetic data in the problem above, if the rate doubles when the temperature increases to 415.4 K, what is the activation energy for the process?
a)
This appears to be first order, since t vs- ln(A) is a straight line
Rate = k*[A]
k = 0.4687
b)
Apply Ahrrenius equation
ln(k2/K1) = E/R*(1/T1- 1/T2)
ln(2k1 / k1) = E/8.314*(1/(305.2 ) - 1/415.4))
ln(2) = E * 0.0001045491
E = ln(2) /0.0001045491
E = 6629.8722 J/mol