Question

In: Finance

YBM’s stock price S is $102 today. — After six months, the stock price can either...

YBM’s stock price S is $102 today. — After six months, the stock price can either go up to $115.63212672, or go down to $93.52995844. — Options mature after T = 6 months and have an exercise price of K = $105. — The continuously compounded risk-free interest rate r is 5 percent per year. Given the above data, suppose that a trader quotes a put price of $5. Then the arbitrage profit that you can make today by trading this call and related securities is:

Group of answer choices

$0.33

$0.59

$1.54

$0

please provide explanation

Solutions

Expert Solution

$0.59 is the arbitrage profit that you can make today.

The stock has equal probability (=0.5) of moving up or down

Consider a case in which the an arbitrageur by the out option with strike price =$105 for $5

Up-front payment = $5

If the stock moves to $115.63212672, the put option remains out-of-money and hence expires worthless

If the stock moves to $93.52995844, the put-option pays off ($105-$93.52995844) = $11.47 at maturity

Hence, expected payoff by the put option at maturity = Probability of up-move * Payoff at up-move +Probability of down-move * Payoff at down-move

Expected payoff by the put option at maturity = 0.5*0 + 0.5*11.47 = $5.735

The risk-free rate is 0.05 and time to maturity is 0.5 years

Present value of the Expected payoff by the put option at maturity = $5.735 * e^(-0.05*0.5)

Present value of the Expected payoff by the put option at maturity = $5.59

Up-front payment for ourchasing the put option = $5

Arbitrage profit today = $5.59 - $5 = $0.59


Related Solutions

YBM’s stock price S is $102 today. — After six months, the stock price can either...
YBM’s stock price S is $102 today. — After six months, the stock price can either go up to $115.63212672, or go down to $93.52995844. — Options mature after T = 6 months and have an exercise price of K = $105. — The continuously compounded risk-free interest rate r is 5 percent per year. Given the above data, the hedge ratio and the put option’s value are given by: Group of answer choices 0.5190 for the hedge ratio and...
YBM’s stock price S is $102 today. — After six months, the stock price can either...
YBM’s stock price S is $102 today. — After six months, the stock price can either go up to $115.63212672, or go down to $93.52995844. — Options mature after T = 6 months and have an exercise price of K = $105. — The continuously compounded risk-free interest rate r is 5 percent per year. Given the above data, suppose that a trader quotes a call price of $6. Then the arbitrage profit that you can make today by trading...
suppose ABC's stock price is $25. In the next six months it will either fal to...
suppose ABC's stock price is $25. In the next six months it will either fal to $15 or it will rise $40. What is the current value of a six month call option with an exercise price of $20? The six month risk free interest rate is 5% (periodic rate). us the risk neutral valuation method A: $13.10 B: $20 C: $8.57 D: $21.33 E: $9.52
Suppose Ford's stock price is currently $10, and in the next six months it will either...
Suppose Ford's stock price is currently $10, and in the next six months it will either fall to $8 or rise to $15. The six-month risk-free interest rate is 1% (it is not the yearly rate). What is the current value of a six-month call option with an exercise price of $10? Explain your answer. Note: std of the u and d are not needed...
— The stock’s price S is $100. After three months, it either goes up and gets...
— The stock’s price S is $100. After three months, it either goes up and gets multiplied by the factor U = 1.13847256, or it goes down and gets multiplied by the factor D = 0.88664332. — Options mature after T = 0.5 year and have a strike price of K = $105. — The continuously compounded risk-free interest rate r is 5 percent per year. — Today’s European call price is c and the put price is p. Call...
— The stock’s price S is $100. After three months, it either goes up and gets...
— The stock’s price S is $100. After three months, it either goes up and gets multiplied by the factor U = 1.13847256, or it goes down and gets multiplied by the factor D = 0.88664332. — Options mature after T = 0.5 year and have a strike price of K = $105. — The continuously compounded risk-free interest rate r is 5 percent per year. — Today’s European call price is c and the put price is p. Call...
— The stock’s price S is $100. After three months, it either goes up and gets...
— The stock’s price S is $100. After three months, it either goes up and gets multiplied by the factor U = 1.13847256, or it goes down and gets multiplied by the factor D = 0.88664332. — Options mature after T = 0.5 year and have a strike price of K = $105. — The continuously compounded risk-free interest rate r is 5 percent per year. — Today’s European call price is c and the put price is p. Call...
Stock price = £30. In 2 months, two months the price will be either £33 or...
Stock price = £30. In 2 months, two months the price will be either £33 or £27. The risk-free interest rate is 10% p.a on a continuous compounding basis. What will be the value of a 2-month European put option with a strike price of £31? Please provide a step by step explanation as I would like to fully understand and not just copy the answer. Thank you :)
Stock price = £60. In 2 months, two months the price will be either £66 or...
Stock price = £60. In 2 months, two months the price will be either £66 or £54. The risk-free interest rate is 10% p.a on a continuous compounding basis. What will be the value of a 2-month European put option with a strike price of £62? Please provide a step by step explanation as I would like to fully understand and not just copy the answer. Thank you :)
A futures price is currently 50. At the end of six months it will be either...
A futures price is currently 50. At the end of six months it will be either 56 or 45. The risk-free interest rate is 3% per annum (continuously compounded). What is the value of a six-month European put option with a strike price of 49? How would you hedge this option if you bought it? Please show all work and also how you would hedge it
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT