Question

In: Computer Science

A box contains 12 items, 4 of which are defective. An item is chosen at random and not replaced.

A box contains 12 items, 4 of which are defective. An item is chosen at random and not replaced. This is continued until all four defec- tive items have been selected. The total number of items selected is recorded.

Solutions

Expert Solution

Sample space of an experiment is the set of all possible outcomes of an experiment.

In the given questions, there are total 12 items, out of which 4 are defective. We have to keep choosing item one by one until all the 4 defective items are out. So, minimum number of 4 trials need to be performed to get the 4 defective items. In the worst case, we have to scan all the 12 items to find the 4 defective ones.

So associated sample space for this experiment will be:

{4,5,6,7,8,9,10,11,12}


Related Solutions

A box of manufactured items contains 12 items of which 4 are defective. If 3 items...
A box of manufactured items contains 12 items of which 4 are defective. If 3 items are drawn at random without replacement, what is the probability that: 1. The first one is defective and rest are good 2. Exactly one of three is defective
A box contains 12 items of which 3 are defective. A sample of 3 items is selected from the box
A box contains 12 items of which 3 are defective. A sample of 3 items is selected from the box. Let X denotes the number of defective item in the sample. Find the probability distribution of X. 
Box A contains 7 items of which 2 are defective, and box B contains 6 items of which 1 is defective.
Box A contains 7 items of which 2 are defective, and box B contains 6 items of which 1 is defective. If an item is drawn at random from each box. Find the probability that both items are non- defective. 1/21 19/42 10/13 25/42
A box contains 10 items, of which 3 are defective and 7 are non-defective. Two items...
A box contains 10 items, of which 3 are defective and 7 are non-defective. Two items are randomly selected, one at a time, with replacement, and x is the number of defective items in the sample. To look up the probability of a defective item being drawn from the box, using a binomial probability table, what would be the values of n, x and p to look up?
From a lot containing 25 items, 5 of which are defective, 4 are chosen at random....
From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defective items found. Obtain the probability distribution of X if (a) the items are chosen with replacement, (b) the items are chosen without replacement.
A lot of 100 items contains 10% which are defective and 90% nondefective. Two are chosen...
A lot of 100 items contains 10% which are defective and 90% nondefective. Two are chosen at random. Let A = {the first item non defective}, B = {the second item non defective}. Find P(B) and show P(B) = P(A). Why is this?
7) A shipment of 10 items contains 4 items which are defective. If we randomly select...
7) A shipment of 10 items contains 4 items which are defective. If we randomly select 4 of the items for inspection, what is the probability of at least 3 non-defective items in the sample? Assume sampling without replacement. a) 185/210 b) 184/210 c) 25/210 d) 115/210* e) 175/210
a package contains 9 resistors 2 of which are defective if 4 are selected at random...
a package contains 9 resistors 2 of which are defective if 4 are selected at random find the probability of getting 0 defective 1 defective 2 defective
Only 4% of items produced by a machine are defective. A random sample of 200 items...
Only 4% of items produced by a machine are defective. A random sample of 200 items is selected and checked for defects. a. Refer to Exhibit 7-1. What is the expected value for ? b. What is the probability that the sample proportion will be within +/-0.03 of the population proportion c.What is the probability that the sample proportion will be between 0.04 and 0.07?
A shipment contains 200 items of which 50 are defective. A sample of 16 items from the shipment is selected at random without replacement.
 A shipment contains 200 items of which 50 are defective. A sample of 16 items from the shipment is selected at random without replacement. We accept the shipment if at most 3 items in the sample are defective. (a) Write down (but do not evaluate) an exact formula for the probability of acceptance. (b) Use a Table to give the decimal value for the binomial approximation of the probability of acceptance. Show your work. (c) Suppose instead that the shipment contains 500 items of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT