Question

In: Physics

A mass on a spring undergoes simple harmonic motion. At t = 0 its displacement is...

A mass on a spring undergoes simple harmonic motion. At t = 0 its displacement is 1m and its velocity is 1m/s towards the equilibrium position. What single piece of information allows you to determine frequency and amplitude?

A. mass

B. spring constant (k)

C. kinetic energy at t = 0

D. acceleration at t = 0

E. force at t = 0

Solutions

Expert Solution

given :

displacement = x = 1 m

instantaneous velocity = v = 1 m/s

formula for displacement is given as

x =

formula for frquency

hence to find out frequency and amplitude we need value of .

option A) mass - not sufficient

as both the formulaes do not require mass information

option B) spring constant = k = - not sufficient

as we also neeed value of mass to find out

option c) kinetic energy at t = 0 - K.E. = - not sufficient

it also requires value of mass to find .

option D) acceleration = - - sufficient

using acceleration we can find and this value will be needed to find amplitude and frequency.

option E) force at t = 0 - not sufficient

F = - kx

using force value we can find k and to find again we require value of mass which is not provided.


Related Solutions

A spring-mass system undergoes simple harmonic motion. Which of the following statements are True/False? The kinetic...
A spring-mass system undergoes simple harmonic motion. Which of the following statements are True/False? The kinetic energy is maximum at the point of zero displacement. (True or False) The potential energy is maximum at the point of maximum displacement. (True or False) The force exerted by the spring is zero at the point of maximum displacement. (True or False ) The acceleration is greatest at the point of zero displacement. (True or False ) If the amplitude of the oscillations...
A mass-spring system with 0.200 kg undergoes simple harmonic motion with period 0.55 seconds. When an...
A mass-spring system with 0.200 kg undergoes simple harmonic motion with period 0.55 seconds. When an additional mass Δm is added, the period increases by 20 % . FIND Δm show work
The displacement as a function of time of a 4.0kg mass spring simple harmonic oscillator is...
The displacement as a function of time of a 4.0kg mass spring simple harmonic oscillator is .   What is the displacement of the mass at 2.2 seconds? ___________m What is the spring constant? ___________________N/m What is the position of the object when the speed is maximum? ______________m What is the magnitude of the maximum velocity?____________________m/s
Problem 1. A mass oscillates on a horizontal spring performing a simple harmonic motion. Time t...
Problem 1. A mass oscillates on a horizontal spring performing a simple harmonic motion. Time t = 0.00 sec corresponds to the moment when the mass is at the location 15.0 cm to the left of the equilibrium, and moving to the right. 1. If the maximal speed of this oscillator is 1.50 m/s, and the maximal magnitude of its acceleration is 4.50 m/s2 what is the amplitude and the period of this oscillator? 2. Using circle of reference, calculate...
Four mass–spring systems oscillate in simple harmonic motion. Rank the periods of oscillation for the mass–spring...
Four mass–spring systems oscillate in simple harmonic motion. Rank the periods of oscillation for the mass–spring systems from largest to smallest. m = 2 kg , k = 2 N/m m = 2 kg , k = 4 N/m m = 4 kg , k = 2 N/m m = 1 kg , k = 4 N/m
The displacement of an object in simple harmonic motion is described by the equation 0.40m*sin(8.9rad/s(t)) +...
The displacement of an object in simple harmonic motion is described by the equation 0.40m*sin(8.9rad/s(t)) + 0.61m*cos(8.9rad/s(t)). A) Determine the position and velocity when t = 0 seconds. B) Determine the maximum displacement of the system. C) Determine the maximum acceleration of the system. D) Determine the velocity of the system at t = 6 seconds.
Generally speaking, a system undergoes simple harmonic motion if there is a restoring force that increases...
Generally speaking, a system undergoes simple harmonic motion if there is a restoring force that increases linearly with displacement from equilibrium. In the discussion, describe how a pendulum and a mass on a horizontal spring satisfy those conditions (ignore any friction forces); also, include another example of a real world system that undergoes simple harmonic motion and discuss how it satisfies the conditions mentioned above. Finally, be sure to respond to at least two of your peers’ discussion posts.
An object attached to a spring vibrates with simple harmonic motion as described by the figure...
An object attached to a spring vibrates with simple harmonic motion as described by the figure below. (a) For this motion, find the amplitude.   (b) For this motion, find the period. (c) For this motion, find the angular frequency.  (d) For this motion, find the maximum speed  (e) For this motion, find the maximum acceleration.  (f) For this motion, find an equation for its position x in terms of a sine function. 
A 323 g object is attached to a spring and executes simple harmonic motion with a...
A 323 g object is attached to a spring and executes simple harmonic motion with a period of 0.210 s. If the total energy of the system is 6.70 J. (a) Find the maximum speed of the object. m/s (b) Find the force constant of the spring. N/m (c) Find the amplitude of the motion. mA 323 g object is attached to a spring and executes simple harmonic motion with a period of 0.210 s. If the total energy of...
Question ) a) Briefly state an explanation of what the helical spring in simple harmonic motion...
Question ) a) Briefly state an explanation of what the helical spring in simple harmonic motion and its concepts are in min 300 words? (In word text, no pictures) b) What is the Aim of The helical spring in simple harmonic motion experiment where in oscillations of 30 how long it takes or the time it takes for each set of weights is measured?(min 100 words)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT