In: Statistics and Probability
Prisoner |
Willing-ness |
Days Served |
(x-xbar) |
(y-ybar) |
(x-xbar)^2 |
(y-ybar)^2 |
(x-xbar)* (y-ybar) |
Jake |
20 |
4 |
9 |
-20 |
81 |
16 |
-180 |
Jason |
3 |
65 |
-8 |
41 |
64 |
4225 |
-328 |
Sarah |
10 |
20 |
-1 |
-4 |
1 |
400 |
4 |
D |
11 |
9 |
0 |
-15 |
0 |
81 |
0 |
Dean |
18 |
7 |
7 |
-17 |
49 |
49 |
-119 |
Joan |
4 |
39 |
-7 |
15 |
49 |
1521 |
105 |
Sum |
66 |
144 |
0 |
0 |
244 |
6292 |
-728 |
Mean |
11 |
24 |
Variance==> |
40.6666 |
|||
Median |
10.5 |
14.5 |
Standard Deviation=> |
6.3770 |
Use the above table and briefly answer the following questions:
a.
X Values
∑ = 66
Mean = 11
∑(X - Mx)2 = SSx = 244
Y Values
∑ = 144
Mean = 24
∑(Y - My)2 = SSy = 2836
X and Y Combined
N = 6
∑(X - Mx)(Y - My) = -728
R Calculation
r = ∑((X - My)(Y - Mx)) /
√((SSx)(SSy))
r = -728 / √((244)(2836)) = -0.8752
So r^2=-0.8752^2=0.7660
So 76.60% of variation in y is explained by x
b. X Values
∑ = 66
Mean = 11
∑(X - Mx)2 = SSx = 244
Y Values
∑ = 144
Mean = 24
∑(Y - My)2 = SSy = 2836
X and Y Combined
N = 6
∑(X - Mx)(Y - My) = -728
R Calculation
r = ∑((X - My)(Y - Mx)) /
√((SSx)(SSy))
r = -728 / √((244)(2836)) = -0.8752
Hence we see that there is strong negative correlation between x and y