In: Finance
Singing Fish Fine Foods has a current annual cash dividend policy of $2.00. The price of the stock is set to yield a return of 14%. What is the price of this stock if the dividend will be paid for:
A) 12 years?
B) 15 years?
C) 40 years?
D) 50 years?
E) 100 years?
F) Forever?
Solution: | |||
A. | 12 years | Price =$11.32 | |
B. | 15 years | Price =$12.28 | |
C. | 40 years | Price =$14.21 | |
D. | 50 years | Price =$14.27 | |
E. | 100 years | Price =$14.29 | |
F. | Forever | Price =$14.29 | |
Working Notes: | |||
Required rate of return r =14% = 0.14 | |||
Current annual dividend (D0) = $2.00 | |||
Finite constant dividend model will be used for A to E | |||
Price = Dividend × (1 – 1/(1+r)^n) / r | |||
n= finite period = no of years | |||
A. | 12 years | ||
Notes: | Price = Dividend × (1 – 1/(1+r)^n) / r | ||
Price =2 × (1 – 1/(1+0.14)^12) / 0.14 | |||
Price =11.32058425 | |||
Price =$11.32 | |||
B. | 15 years | ||
Notes: | Price = Dividend × (1 – 1/(1+r)^n) / r | ||
Price =2 x (1 - 1/(1+0.14)^15) / 0.14 | |||
Price =12.28433597 | |||
Price =$12.28 | |||
C. | 40 years | ||
Notes: | Price = Dividend × (1 – 1/(1+r)^n) / r | ||
Price =2 x (1 - 1/(1+0.14)^40) / 0.14 | |||
Price =14.21008188 | |||
Price =$14.21 | |||
D. | 50 years | ||
Notes: | Price = Dividend × (1 – 1/(1+r)^n) / r | ||
Price =2 x (1 - 1/(1+0.14)^50) / 0.14 | |||
Price =14.26531291 | |||
Price =$14.27 | |||
E. | 100 years | ||
Notes: | Price = Dividend × (1 – 1/(1+r)^n) / r | ||
Price =2 x (1 - 1/(1+0.14)^100) / 0.14 | |||
Price =14.2856852 | |||
Price =$14.29 | |||
F. | Forever | ||
for forever case will use infinite constant dividend model | |||
Price = Dividend / r | |||
Price = $2/ 0.14 | |||
Price =$14.28571429 | |||
Price =$14.29 | |||
Please feel free to ask if anything about above solution in comment section of the question. |