In: Statistics and Probability
As you increase your confidence level, the associated interval gets wider. At what point might the interval get so wide, it ceases to be of any use?
A confidence interval calculates the probability that a population parameter will fall between two set values. Confidence intervals measure the degree of uncertainty or certainty in a sampling method.
Suppose a group of researchers is studying the heights of high school basketball players. The researchers take a random sample from the population and establish a mean height of 74 inches. The mean of 74 inches is a point estimate of the population mean. A point estimate by itself is of limited usefulness because it does not reveal the uncertainty associated with the estimate; you do not have a good sense of how far away this 74-inch sample means might be from the population mean. What's missing is the degree of uncertainty in this single sample.
Confidence intervals provide more information than point estimates. By establishing a 95% confidence interval using the sample's mean and standard deviation, and assuming a normal distribution as represented by the bell curve, the researchers arrive at an upper and lower bound that contains the true mean 95% of the time. Assume the interval is between 72 inches and 76 inches. If the researchers take 100 random samples from the population of high school basketball players as a whole, the mean should fall between 72 and 76 inches in 95 of those samples.
If the researchers want even greater confidence, they can expand the interval to 99% confidence. Doing so invariably creates a broader range, as it makes room for a greater number of sample means. If they establish the 99% confidence interval as being between 70 inches and 78 inches, they can expect 99 of 100 samples evaluated to contain a mean value between these numbers. A 90% confidence level means that we would expect 90% of the interval estimates to include the population parameter. Likewise, a 99% confidence level means that 95% of the intervals would include the parameter.
When the confidence interval exceeds the 99% mark, it becomes useless, it defines nothing then. As you already know the associated interval that belongs to a 100% confidence interval, it's the whole dataset. Hence, it is not advisable to use a 100% confidence interval.